

SCHOOL of ENGINEERING & MANAGEMENT KOLHAPUR

F.Y. B. Tech.
Computer Science Engineering
Structure and Curriculum

Department of First Year Engineering

w. e. f. A.Y.: 2024-25

F.Y. B. Tech Computer Science & Engineering Structure 2024-25

		SEMESTER	R – I									
		Tea	achin	g Sch	eme		Theory	y	Prac	tical		
Course Category	Course	Course Name	Credits	Contact Hrs.			ISE		ESE	INT	OE/	Total Marks
Course Category	Type	Course Ivame	Credits	L	P	T	ISE	MSE	ESE	1111	PoE	1,14,11
Basic Sciences	BSC	Linear Algebra & Calculus	4	3	-	1	20	30	50	25	-	125
Dasic Sciences	BSC	Applied Physics	4	3	2	-	20	30	50	25	-	125
Engineering Science	ESC	Problem Solving through Programming	4	3	2	-	20	30	50	25	-	125
Engineering Science	ESC	Digital Logic Design	4	3	2	-	20	30	50	25	-	125
Vocational Skills Enhancement Course	VSEC	Design Thinking Through Innovation	2	1	2	-	25	-	-	25	-	50
Indian Knowledge System	IKS	Historical Places in and Around Kolhapur District	2	2	-	-	20	30	-	-	-	50
Co-Curricular Activities	CCA	Liberal Learning – I	2	-	4	-	-	-	-	50	-	50
Mandatami Cauraa	MC	Finishing School Training - I	-	3	-	-	50	-	-	-	-	Grade
Mandatory Course	MC	Rural/Social Internship	-	-	-	-	-		-	50	-	Grade
		Total	22	15	12	1	175	150	200	225	-	650
		SEMESTER	R – II									
Basic Sciences	BSC	Differential Equations & Numerical Techniques	4	3	-	1	20	30	50	25	-	125
	BSC	Applied Chemistry	4	3	2	-	20	30	50	25	-	125
Engineering Science	ESC	Generative AI	4	3	2	-	20	30	50	25	-	125
Ability EnhancementCourse	AEC	Professional Communication	2	1	2	-	25	-	-	25	-	50
Co-Curricular Activities	CCA	Liberal Learning - II	2	-	4	-	50	-	-	-	-	50
Program Core Courses	PCC	Elementary Data Structures & Algorithms	2	2	-	-	-	-	50	-	_	50
Vocational Skills Enhancement Cours	VSEC	Python Programming	2	1	2	-	25	-	-	25	-	50
Mandatory Course	MC	Capstone Project	-	-	-	-	-	-	-	50	-	Grade
Manuatory Course	MC	Finishing School Training - II	-	3	-	-	50	-	-	-	-	Grade
		Total	20	13	12	1	210	90	200	175	-	575

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

F. Y. B. Tech. Scheme of Teaching and Examination w. e. f. A. Y. 2024-2025 **Semester-I**

Sr.	Course Code	Course	Name of the Course	Scł	eachi neme Week	Per	Credits	Total		Evaluat	ion Schen	ne
No	Course Code	Туре		L	P	Т		Marks	Туре	Max. Marks	Minimum Marks For Passing	
	Students Induction P					er AI	CTE Guide	lines				
1	241CSEBSCL101	BSC	Linear Algebra & Calculus	03			03	100	ISE MSE ESE	20 30 50	40	
2	241CSEBSCL105	BSC	Applied Physics	03			03	100	ISE MSE ESE	20 30 50	40	
3	241CSEESCL101	ESC	Problem Solving through Programming	03			03	100	ISE MSE ESE	20 30 50	40	
4	241CSEESCL103	ESC	Digital Logic Design	03			03	100	ISE MSE ESE	20 30 50		
5	241CSEVSECL101	VSEC	Design Thinking Through Innovation	01			01	25	ISE	25 10		
6	241CSEIKSL101	IKS	Historical Places in and Around Kolhapur District	02			02	50	ISE MSE	20 30	20	
7	241CSEBSCP102	BSC	Linear Algebra & Calculus Tutorial			01	01	25	ISE	25	10	
8	241CSEBSCP106	BSC	Applied Physics Laboratory		02		01	25	ISE	25	10	
9	241CSEESCP102	ESC	Problem Solving through Programming Laboratory	1	02		01	25	ISE	25	10	
10	241CSEESCP104	ESC	Digital Logic Design Laboratory		02		01	25	ISE	25	10	
11	241CSEVSECP102	VSEC	Design Thinking Through Innovation Laboratory		02		01	25	ISE	25	10	
12				04		2	50	ISE	50	20		
	Total				12	01	22	650		-1		
		I	Man	dator	y Cou	rses						
1	241CSEMC102	MC	Rural/Social Internship					50	ISE	Grade		
2	241CSEMC101	MC	Finishing School Training - I	03				50	ISE	Grade		

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

F. Y. B. Tech. Scheme of Teaching and Examination w. e. f. A. Y. 2024-2025 **Semester -II**

Sr.		Course	N. Cal. C	Scl	eachir heme l Week	Per	G 114	Total	E	valuation S	Scheme		
No	Course Code	Туре	Name of the Course	L	P	Т	Credits	Marks	Туре	Max. Marks	Minimum Marks for Passing		
									ISE	20			
1	241CSEBCSL103		BSC Differential Equations &		03	03		03	100	MSE	30	40	
	Ni Ni		Numerical Techniques						ESE	50			
									ISE	20			
2	241CSEBSCL107	41CSEBSCL107 BSC Applied Chemistry	03			03	100	MSE	30	40	1		
			Tr ·····				0.5		ESE	50			
									ISE	20			
3	241CSEESCL105	ESC	Generative AI	03			03	100	MSE	30	40	1	
	Zirebeeseeros	Loc	Generalive III	0.5				100	ESE	50	10		
4	241CSEAECL102	AEC	Professional Communication	01			01	25	ISE	25	10	1	
5	241CSEPCCL101	PCC	Elementary Data Structures & Algorithms	02			02	50	ESE	50	50 20		
6	241CSEVSECL103	VSEC	Python Programming	01		-	01	25 ISE 2		25	10		
7	241CSEBSCLP104	BSC	Differential Equations & Numerical Techniques Tutorial			01	01	25	ISE	25	10)	
8	241CSEBSCP108	BSC	Applied Chemistry Laboratory		02		01	25	ISE	25	10	1	
9	241CSEESCP106	ESC	Generative AI Laboratory		02		01	25	ISE	25	10)	
10	241CSEAECP103	AEC	Professional Communication Laboratory	ł	02	ł	01	25	ISE	25	10)	
11	241CSEVSECP104	VSEC	Python Programming Laboratory		02	1	01	25	ISE	25	10	l	
12	241CSECCAP102	CAP102 CCA Liberal Learning - II			04	1	02	50	ISE	50	20	١	
	Total		13	12	1	20	575						
			Ma	ındato	ory Co	urses		1			1		
1	241CSEMC104	MC	Capstone Project					50	ISE	Grade			
2.	241CSEMC103	MC	Finishing School Training - II	03		-	-	50	ISE	Grade			

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Linear Algebra & Calculus	
Course Code: 241CSEBSCL101	Semester: I
Teaching Scheme: L-T-P: 3-1-0	Credits: 3
Evaluation Scheme ISE-I/MSE/ISE-II: 10/30/10	ESE Marks: 50

Prior Knowledge of:	Matrices, Derivatives

Course Objectives:

1.	To teach mathematical methodology.
2.	To develop mathematical skills and enhance the logical thinking power of students.
3.	To provide students with skills in Linear Algebra and Calculus.
4.	To imbibe graduates with mathematical knowledge, computational skills, and the ability to deploy these skills effectively in solution of engineering problems.

Curriculum Details

Course Contents	Duration
Unit 1: Unit-I Linear Algebra –I	
Introduction to matrices, types of matrices	
Rank of matrix by normal form and echelon form	07 11
Solution of simultaneous linear non-homogenous equations	07 Hrs
Solution of simultaneous linear homogenous equations	
Unit 2: Numerical Solutions of Linear Algebra	
• Introduction	
Gauss–Elimination method	
Gauss –Jordan method	07 Hrs
Gauss –Seidel method	
Jacobi's iterative method	
Power method	
Unit 3: Linear Algebra –II	
 Definition of a linear combination of vectors 	
Dependence and independence of vectors	07 Hrs
Eigenvalues and its properties	U/ HIS
Eigenvectors and their properties	
Cayley-Hamilton theorem	
Unit 4: Differential Calculus	
Introduction.	
Partial derivatives	07.11
Total derivatives	07 Hrs
Euler's theorem on homogeneous functions	
Jacobian and its properties	

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit 5: Multiple Integrals	
Introduction of Double integrals	
 Method of evaluation of Double integrals 	
Change of order of integration	07 Hrs
 Area enclosed by plane curves 	
Mass of a plane lamina	
Unit 6: Vector Spaces	
The Euclidean space and vector space, subspace	
• Linear combination, linear span, linear dependence and independence	07.11
Basis, dimensions of finite dimensional vector space	07 Hrs
Subspace- Row and column spaces	
Rank and nullity Theorem	

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
101.1	Reduce matrices to echelon form and apply the concept of rank of matrices to solve a system of linear equations
101.2	Solve linear equations by numerical methods.
101.3	Identify Eigen values & make use of them for finding Eigenvectors.
101.4	Apply the knowledge of partial differentiation.
101.5	Apply multiple integrals to calculate the areas and mass of lamina.
101.6	Recognize and use basic properties of subspace and vector space.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs COs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
101.1	2, 3	3	2	I	1	1			1		-	-	1
101.2	3	3	2			1							1
101.3	2, 3	3	2			1							1
101.4	3	2	2										1
101.5	3	2	2										1
101.6	3	2	2			1							1

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Text Books:

Sr.	Title	Edition	Author(s)	Publisher	Year
No					
1	Advanced Engineering Mathematics	7 th	Peter V. O'Neil	Cengage Learning	2012
2	Advanced Engineering Mathematics	1 st	H. K. Dass	S. Chand Publications, New Delhi	2011
3	A Text Book of Applied Mathematics	7 th	P.N.Wartikar, J.N.Wartikar	Vidyarthi Griha Prakashan, Pune.	2006
4	Higher Engineering Mathematics	36 th	B.S. Grewal	Khanna Publishers	2001
5	Linear Algebra		Jin Ho Kwak and Sungpyo Hong	Springer	2004
6	Numerical Methods in Engineering and Science		B.S. Grewal	Khanna Publishers	

Reference Books:

	derence books.	I	I		
Sr.	Title	Edition	Author(s)	Publisher	Year
No					
1	Advanced Engineering	5 th	Erwin Kreyszig	India Pvt, Ltd.	2014
	Mathematics				
2	Higher Engineering	6 th	B.V.Ramana	Tata M/c Graw-	2010
	Mathematics			Hill Publication	
3	Numerical Methods for	5 th	M.K.Jain	New Age International	2007
	Scientific and Engineering			Pvt.	
	Computation			Ltd New Delhi	
4	A Textbook of Engineering	6 th	N.P.Bali,	Laxmi Publication	2004
	Mathematics	Ü	Iyengar		
5	Elementary Linear Algebra	5 th	Stephen	Academic Press	2016
	-		Andrilli and		
			David Hecker		

Useful Link /Web Resources:

- 1. DELNET- http://www.delnet.in
- 2. NDL-http://ndl.iitkgp.ac.in
- 3. N-LIST- http://www.nlist.inflib.ac.in
- **4.** https://www.youtube.com/results?search_query=Dr+Navneet+Sangle

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Linear Algebra & Calculus	
Course Code: 241CSEBSCP102	Semester: I
Teaching Scheme: L-T-P: 0-1-0	Credits: 1
Evaluation Scheme ISE: 25	ESE Marks:

Prior Knowledge of:	Matrices, Derivatives

Course Objectives:

1.	To teach mathematical methodology.
2.	To develop mathematical skills and enhance the logical thinking power of students.
3.	To provide students with skills in Linear Algebra and Calculus.
4.	To imbibe graduates with mathematical knowledge, computational skills, and the ability to deploy these skills effectively in solution of engineering problems.

List of Tutorials

Tut. No.	Title of Tutorials	Duration
01	Linear Algebra–I: Rank of Matrix, Solutions of Non-homogenous simultaneous linear equations	01Hr
02	Linear Algebra–I: Solutions of simultaneous linear homogeneous Equations	01Hr
03	Numerical Solutions of Linear Equations: Gauss–Elimination method, Gauss–Jordan method.	01Hr
04	Numerical Solutions of Linear Equations: Gauss—Seidel method, Jacobi's iterative method.	01Hr
05	Linear Algebra: Linear Algebra using SCILAB/MATLAB	01Hr
06	Linear Algebra –II: Dependence and Independence of vectors	01Hr
07	Linear Algebra –II: Eigen values and Eigen vectors of Matrix, Cayley-Hamilton Theorem	01Hr
08	Differential Calculus: Euler's theorem on homogeneous functions.	01Hr
09	Differential Calculus: Partial derivatives, Jacobian and its properties.	01Hr
10	Multiple Integrals: Double integrals, change of order of integration, evaluation of Double integrals, change variables to polar coordinates, area enclosed by plane curves, Mass of a plane lamina.	01Hr
11	Vector Spaces: Vector space, Span, Basis, dimensions, subspace- Row and column spaces, Rank and nullity Theorem	01Hr
12	Vector Spaces: Vector Spaces using SCILAB/MATLAB	01Hr

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Applied Physics				
Course Code: 241CSEBSCL105	Semester: I & II			
Teaching Scheme: L-T-P:3-0-0	Credits: 03			
Evaluation Scheme ISE-I/MSE/ISE-II: 10/30/10	ESE Marks: 50			

Prior Knowledge of:	Fundamentals of optics, semiconductors, nature of radiation, quantum mechanics, electrochemistry.
---------------------	---

Course Objectives:

	be Objectives:
1.	To provide basic concept of modern optics
2.	To make the students grasp the working principles of LASER and its applications
3.	To perceive the fundamentals of quantum mechanics and its applications
4.	To explain electronic properties of semiconductors materials from quantum mechanical point
	of view
5.	To elucidate the thermodynamic and kinetic properties of cell reactions in rechargeable
	batteries

Curriculum Details

Course Contents	Duration
 Unit 1: Wave Optics Introduction: interference, diffraction, review of geometric and optical path Theory of plane diffraction grating and grating equation Resolving power of plane diffraction grating Newton's ring: Experimental arrangement Diameter of bright and dark ring Determination of wavelength of monochromatic light using Newton's ring 	07 Hrs
 Unit 2: LASER Concept of LASER, Principle and working of LASER: Absorption, Spontaneous emission, Stimulated emission, Population inversion Einstein's coefficient Properties of LASER Types of LASERS - Ruby LASER, He-Ne LASER Applications of LASER: Industrial, Medical 	07 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

(As Per National Education Policy 2020) Unit 3: Quantum Mechanics	
 Introduction to quantum physics de Broglie wavelength of matter waves and its different forms Heisenberg's uncertainty principle Wave function and probability interpretation Schrödinger's time independent & dependent wave equation (1-D) Energy of particle in 1-D potential well using Schrödinger equation Numerical 	07 Hrs
Unit 4: Semiconductor Physics	
 Fermi Dirac distribution Formation of bands in solids Fermi energy and Fermi level in intrinsic and extrinsic semiconductors Dependence of Fermi energy on temperature Hall effect: equation for Hall voltage and Hall coefficient and relation between them Numerical 	07 Hrs
Unit 5: Semiconductor Devices and Digital Electronics	
 Properties of a P-N junction Diode equation and I-V characteristic Construction, working and I-V characteristics of BJT, JFET and MOSFET Introductory digital concepts: Logic levels, Digital waveform and characteristic. Time clock and timing diagram Logic functions and logic gates: AND, OR, NOT, NAND, NOR, X-OR, and X-NOR Numerical 	07 Hrs
Unit 6: Supercapacitor and Battery	
 Introduction: Electrolytic and galvanic cells, Electrochemical energy storage: Supercapacitors and Batteries Types of supercapacitors and batteries Cell reactions in rechargeable batteries Thermodynamic and Kinetic parameters of cell reactions Courses of the cell reactions in different rechargeable batteries Heat effects and Battery parameters 	07 Hrs

Self-learning topics: Fire Temperature sensor (TIR-based), NDT of materials, Optical fiber as sensors, CO₂ LASER

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After completion of the course, students will be able to:

CO	Statements
105.1	Apply the principle of interference and relate concepts in various engineering applications
105.2	Summarize the working mechanism and applications of LASER
105.3	Examine 1-D potential well problems using principles of quantum mechanical phenomenon
105.4	Interpret the electronic properties of semiconductors
105.5	Express the output characteristics of P-N junction-based semiconductor devices
105.6	Determine the equilibrium cell voltage using thermodynamic parameters of rechargeable batteries

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

burse Articulation Waterix: Mapping of Course Outcomes (COS) with Frogram Outcomes (FOS)													
POs Cos	BTL	1	2	3	4	5	6	7	8	9	10	11	12
105.1	3	3	2	-	-	-	-	-	-	-	-	-	1
105.2	2	3	2	-	-	-	-	-	-	-	-	-	1
105.3	3	3	2	-	-	-	-	-	-	-	-	-	1
105.4	2	3	2	-	-	-	-	-	-	-	-	-	1
105.5	2	3	2	-	-	-	-	-	-	1	-	-	1
105.6	3	3	2	-	-	-	-	-	-	1	-	-	1

Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Engineering Physics	1 st	H. K. Malik	Tata McGraw	2019
				Hill Education	
2	A Text Book of	Revised	M. N. Avadhanulu,	S. Chand	2018
	Engineering Physics		P. G. Kshirasagar	Publications	
3	Engineering Physics	Revised	L.N. Singh	Synergy	2016
			-	Knowledge	
				Ware	
4	Engineering Physics	Revised	V. Rajendran	Tata McGraw	2010
				Hill Education	
5	Engineering Physics	1 st	R.K. Gaur,	Dhanpat Rai	1993
			S.L. Gupta	Publications	

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Fundamentals of Physics	Revised	J. Walker,	Wiley	2018
			D. Halliday,	Publications	
			R. Resnick		
2	Engineering Physics	1 st	B.K. Pandey and	Cengage learning	2017
			Chaturvedi	Publications	
3	Battery Technology	2 nd	H. A. Kiehne	Marcel Dekker,	2003
	Handbook			Inc., New York	
4	Introduction to Solid State	8 th	Charles Vittal	John Willey and	2009
	Physics		Charles Kittel	Sons Inc.	
5	Solid State Physics	6 th	S.O.Pillai	New edge	2009
				Internationals	
6	Digital Fundamentals	8 th	T. L. Floyd	Pearson	2003
			-	Education Inc.,	
				New Delhi	

Useful Link /Web Resources:

- 1. http://hyperphysics.phy-astr.gsu.edu/hbase/index.html
- 2. https://en.wikipedia.org/wiki/Wave_interference
- 3. https://en.wikipedia.org/wiki/Introduction_to_quantum_mechanics

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Applied Physics Laboratory		
Course Code: 241CSEBSCP106	Semester: I/II	
Teaching Scheme: L-T-P: 0-0-2	Credits: 01	
Evaluation Scheme: ISE: 25	ESE Marks:	

Prior Knowledge of:	Optics,	magnetic	materials,	semiconductor	basics,	graph	plotting,	slope
	calculation							

Course Objectives:

1	To make the students understand the concept of physics for the effective application in the
	field of engineering and technology.
2	To use the knowledge of electron transport in semiconductors.
3	To summarize the factors affecting the capacitance of the supercapacitors.

List of Experiments-

Exp. No	Title of Experiments	Duration
01	To compute diameter of cylindrical obstacle using mono chromatic Source	02 Hrs
02	To calculate radius of curvature of Plano convex lens using Newton's ring	02 Hrs
03	To determine the velocity of the ultrasonic wave in water using ultrasonic Interferometer	02 Hrs
04	To determine wavelength of LASER using diffraction grating	02 Hrs
05	To decide band gap energy of P-N junction diode	02 Hrs
06	To determine divergence of LASER beam	02 Hrs
07	To determine resolving power of diffraction grating	02 Hrs
08	To recognize carrier concentration of semiconductor using Hall effect	02 Hrs
09	To Determine wavelength of light using plane diffraction grating	02 Hrs
10	To study physical significance of wave function quantum mechanics	02 Hrs
11	To calculate the resolving power of telescope	02 Hrs
12	To prove De Morgan's theorem	
13	To calculate the performance parameters of a given supercapacitor device using the data recorded on an electrochemical work-station	02 Hrs

Minimum 10 Experiments should be conducted from above list.

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to

CO	Statements
106.1	Implement knowledge related to optics to use for suitable purposes in applied physics
106.2	Examine the properties of LASER for suitable applications in applied physics
106.3	Apply the theory of semiconductors to estimate band gap energy and carrier concentration
106.4	Determine the performance parameters of a supercapacitor device using a modern electrochemical workstation

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs	BTL	1	2	3	4	5	6	7	8	9	10	11	1 2
106.1	3	3	1	1	ı	ı	1	1	1	1	-	-	1
106.2	3	3	-	1	-	-	-	-	1	1	-	-	1
106.3	3	3	-	1	-	-	-	-	1	1	-	-	1
106.4	3	3	-	-	-	1	-	-	-	-	-	-	1

Suggested Learning Resources: Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Engineering Physics	1 st	H.K. Malik	Tata McGraw Hill Education	2019
2	A Text Book of EngineeringPhysics	Revised	M. N. Avadhanulu, P. G. Kshirasagar	S. Chand Publications	2018
3	Engineering Physics	Revised	L. N. Singh	Synergy Knowledge Ware	2016
4	Engineering Physics	Revised	V. Rajendran	Tata McGraw Hill Education	2010
5	Engineering Physics	1 st	R.K. Gaur, S.L. Gupta	Dhanpat Rai Publications	1993

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Fundamentals of Physics	Revised	J.Walker, D.Halliday, R.Resnick	Wiley Publication	2018
2	Engineering Physics	1 st	B.K. Pandey and Chaturvedi	Cengage Learning Publications	2017
3	Battery Technology Handbook	2 nd	H. A. Kiehne	Marcel Dekker, Inc., New York	2003
4	Introduction to Solid State Physics	8 th	C.Kittel	John Willey and Sons Inc.	2009
5	Solid State Physics	6 th	S.O.Pillai	New edge Internationals,	2009
6	Digital Fundamentals	8 th	T. L. Floyd	Pearson Education Inc., New Delhi	2003

Useful Link /Web Resources:

- 1. https://vlab.amrita.edu/?sub=1
- 2. http://vlabs.iitb.ac.in/vlab/labsps.html

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Problem-Solving Through Programming	
Course Code: 241CSEESCL101	Semester: I
Teaching Scheme: L-T-P: 3 – 0 – 0	Credits: 03
Evaluation Scheme ISE-I, MSE, ISE-II:10/30/10	ESE Marks: 50

Prior Knowledge of:	Basic knowledge of computers.
---------------------	-------------------------------

Course Objectives:

1.	Acquire basic principles of problem-solving using computers.
2.	Learn and use the syntax of C programming language to solve basic science and engineeringproblems.
3.	Select appropriate programming constructs, data structures, and functions to build solutions to a variety of problems.

Curriculum Details:

Course Contents	Duration
Unit 1: Introduction to C programming: Fundamentals of algorithms, flowcharts. Getting started with C- Basic structure of C program, features of C language, Character set, C tokens, Keywords and Identifiers, Data types and Format Specifier. Managing Input and Output operations. Variables-Local and Global variables, rules for defining a variable name, variable initialization-Run time and compile time, variable declaration. Constants-Defining Constant by using preprocessor directive and keyword const. Operators: Arithmetic operators, Relational operators, Logical Operators, Assignment operators, Increment and Decrement operators, Conditional operators, Bit-wiseoperators, Special operators. Operator precedence and Associativity.	07Hrs
Unit 2: Programming Constructs: Need of Decision-making statements- 'if' statement, Simple 'if' statement, the 'ifelse' statement, nesting of 'ifelse' statements, The 'else if' ladder, The 'switch' statement, break statement, The 'go to' statement. Need of looping statements: The 'for',' while', and' do-while statements with examples.	08 Hrs
Unit 3: Arrays& Strings: Arrays-Types of arrays, Declaration arrays, initializing dimensional arrays (One-Dimensional and Two-Dimensional Array)-Run time Initialization and Compile time Initialization with examples. Character Arrays and Strings: Declaration and Initialization- Run time Initialization and Compile time Initialization with examples, reading string from the terminal and writing strings to screen, String handling Functions - strcpy(), strcmp(), strlen(), strcat().	07Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit 4: Structures and Unions:	
Structures-Elements of Structure –Structure definition, declaring structure variables,	
Structure initialization. Accessing structure members by using '.' Operator,	07Hrs
Arrays of structure, Arrays within structures.	
Unions: Elements of Union-Union definition, declaring union variables, Union	
initialization, Comparison of Structure and Unions.	
Unit 5: Functions:	
Need for Functions, Types of functions (User Defined and Built–In).	
User-defined Function-Elements of UDF-Function Definition, Function declaration,	
Function call. Actual Parameters, Formal Parameters.	07Hrs
Categories of functions- With Argument and with the return value, No Argument and with	
a return value, With Argument and No return value, No Argument, and No return value.	
Storage classes (Automatic, Static, Extern, and Register). Passing arrays to	
function, Structures, and Functions. Recursion.	
Unit 6: Pointers:	
Introduction to Pointers, accessing a value of variable by using Pointers-Declaration of	0.477
Pointer variable, Initialization of pointer variables, Dereference operator. Pointers as	U6Hrs
function arguments-Call by value and call by reference. Pointers Expression, Pointers	
and Arrays, Pointers and Strings, Pointers to Functions, Pointers and Structures.	

Self-learning topics: Recent trends in IT.

Course Outcomes (COs): After successful completion of the course, students will be able to:

СО	Statements
101.1	Describe the basic structure of C program and use of different data type.
101.2	Develop conditional and Loop statements to write C programs.
101.3	Explain the concept of arrays and strings to store homogeneous data.
101.4	Use functions to break programs into small module.
101.5	Explain the concept of structures and unions.
101.6	Use pointers to access memory location.

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes(POs)

DO.			· · ··································				`					ì	
POs Cos	BTL	1	2	3	4	5	6	7	8	9	10	11	12
101.1	2	3	3	2	-	-	-	-	-	-	-	-	1
101.2	2	3	3	2	-	-	-	-	-	-	-	-	1
101.3	2	3	3	2	-	-	-	-	-	-	-	-	1
101.4	2	3	3	2	-	-	-	-	-	-	-	-	1
101.5	2	3	3	2	-	-	-	-	-	-	-	-	1
101.6	2	2	2	2	1	-	-	-	-	-	-	-	1

Text Books:

Sr.No	Title	Editio	Author(s)	Publisher	Year
		n			
1	Programming in ANSI C	8 th	E. Balagurusamy	McGraw Hill Education	2019
2	Let Us C	16 th	Yashwant Kanetkar	BPB Publication	2017

Reference Books:

Sr.No	Title	Edition	Author(s)	Publisher	Yea
					r
1	Programming with ANSI And Turbo C	-	Ashok Kamth	Pearson Educatio	2002
			ane	n	
2	Programming in C	2 nd	J.B Dixit	Firewal Media	2011
3	The Complete Reference Edition	4 th	Herbert Schildt	McGraw- Hill Education	201 7

Useful Link /Web Resources:

https://nptel.ac.in/courses/1061041282.

https://www.udemv.com/courses

https://www.coursera.org

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Problem-Solving Through Programming La	boratory
Course Code: 241CSEESCP102	Semester: I
Teaching Scheme: L-T-P: 0 – 0 – 2	Credits: 01
Evaluation Scheme ISE:25	ESE Marks: 25

Prior Knowledge of:	Basic understanding of computer operations and familiarity with
	mathematical concepts

Course Objectives:

1.	Acquire basic principles of problem-solving using computers.
2.	Learn and use the syntax of C programming language to solve basic science and engineering problems.
3.	Select appropriate programming constructs, data structures and functions to build solutions to variety of problems.

Details:

Exp. No	Title of Experiments	Duration
01	To Study basic Linux commands and different IDEs used for programming.	02 Hrs
02	Basic C Programming	02 Hrs
03	C Programs based on Data Types and Operators	02 Hrs
04	C Programs based on Control Structures-conditional statements	02 Hrs
05	C Programs based on Control Structures-loops	02 Hrs
06	C Programs based on Functions	02 Hrs
07	C Programs based on array and string manipulation.	02 Hrs
08	C Programs based on Structures	02 Hrs
09	C Programs based on Pointers	02 Hrs
10	C Programs based on File Handling	02 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
102.1	Develop problem-solving strategies and computational thinking.
102.2	Design and implement algorithms using the C programming language.
102.3	Write, test, and debug C programs effectively.
102.4	Apply problem-solving techniques to a variety of programming challenges.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes(POs)

Course in decidation tractive inapping of course outcomes (Cos) with 110gram outcomes (10s)													
POs Cos	BTL	1	2	3	4	5	6	7	8	9	10	11	12
102.1	2	1				1							2
102.2	2		2					1		1			2
102.3	2	1	2		3			1		1			2
102.4	2	2	2		3	1		1		1	1	1	2

Text Books:

Sr.No	Title	Edition	Author(s)	Publisher	Year
1.	Let Us C	16 th Edition	Yashavant Kanetkar	BPB Publication.	2017
2.	Computer Fundamentals	4 th Edition	D V Cinho	BPB Publications.	2011
3.	How to Solve it by Computer		l R († 1)romev	Pearson Education India	
4.	The Complete	4 th Edition	Herbert Schildt	McGraw-Hill Education	

Reference Books:

Teres ence	Doorist				
Sr.No	Title	Edition	Author(s)	Publisher	Year
1.	The C Programming Language	2 nd Edition	Brian W. Kernighan, Dennis Ritchie	Pearson Education India	2019
2.	C How to Program	7 th Edition	Deitel	Pearson Education India	2017

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Digital Logic Design	
Course Code:241CSEESCL103	Semester: I
Teaching Scheme: L-T-P:3-0-0	Credits:3
Evaluation Scheme ISE-I, MSE, ISE-II:10/30/10	ESE Marks:50

Course Prerequisites:	Basic algebra and understanding of logic
------------------------------	--

Course Objectives:

1.	To understand the basic concepts of digital systems, including binary number systems, Boolean algebra, and logic gates.
2.	To apply and simplify Boolean expressions and logic circuits using Karnaugh maps and Boolean algebra.
3.	To construct digital circuits using basic components like multiplexers, decoders, encoders, and flip-flops.
4.	To artculate the concepts of Processing unit and memory subsystem.

Course Description:

Digital Logic Design focuses on essential concepts in digital systems, including Boolean algebra, logic gates, and both combinational and sequential circuits. The course emphasizes hands-on learning of Sequential and Combinational Circuit designs through hands-on practical's using simulators. By the end, students are equipped to apply digital logic design concepts in computer engineering and related fields.

Curriculum Details:

Course Contents	Duration
Unit 1: Introduction to Digital System and Number System	
Digital Systems, Number System, Number system conversions, Logic Gates, minimization:	
Representation of truth-table, SOP form, POS form, Simplification of logical functions,	
Minimization of SOP and POS forms, don't care conditions Reduction techniques: K-Maps up	05Hrs
to 4 variables.	
Unit 2: Combinational Logic Design	
BCD, Excess-3, Gray code, Binary Code. Half- Adder, Full Adder, Half Subtractor, Full	
Subtractor, Multiplexers (MUX), Demultiplexers (DEMUX)	
Unit 3: Sequential Logic Design & Synchronous and Asynchronous Circuits	
Latches and Flip-Flops, Flip-Flop: SR, J-K, D, T; Preset & Clear, Truth Tables, and	
Excitation tables, Conversion of Flop- Flop, Registers: SISO, SIPO, PISO, PIPO,	08Hrs
Asynchronous Counter, Synchronous Counter, BCD Counter	

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit 4: Introduction to Computer Organization	
Function and structure of a computer Functional components, interconnection of components,	
Bus Structures. Processing Unit: Organization of a processor - Registers, ALU and Control	07Hrs
unit, Instruction cycle	
Unit 5: Input/output Subsystem	
Access of I/O devices, I/O ports, I/O interfaces - Serial port, Parallel port, PCI bus, I/O	07Hrs
peripherals - Input devices, Output devices, Secondary storage devices.	
Unit 6: Memory Subsystem	
Memory Hierarchy, RAM (Random Access Memory), Read Only Memory (ROM), Types of	08 Hrs
ROM, Cache Memory.	

Course Outcomes (COs): After successful completion of the course, students will be able to:

СО	Statements
103.1	Describe the working of basic digital components.
103.2	Solve Boolean expressions for designing digital circuits using K-Maps.
103.3	Design Combinational digital circuits & Sequential circuits.
103.4	Demonstrate basics of Computer organization and Memory

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs Cos		1	2	3	4	5	6	7	8	9	10	11	12
103.1	2	1	-	-	-	-	-	-	-	-	-	-	-
103.2	2	1	1	-	-	2	-	-	-	-	-	-	-
103.3	2	2	2	2	2	3	-	-	-	1	2	-	-
103.4	2	1	-	-	1		-	-	-	-	-	-	-

Text Books:

- 1. R.P.Jain, "Modern Digital Electronics", Tata McGraw-Hill, 4th Edition, 2010 ISBN 978-0-07-06691-16
- 2. Moris Mano, "Digital Logic and Computer Design", 2017, Pearson, ISBN 978-93-325-4252-5
- 3. W. Stallings, "Computer Organization & Architecture: Designing for performance", 10th Edition, 2016, Pearson Education/Prentice Hall of India, ISBN-10: 0-13-410161-8 | ISBN-13: 978-0-13-410161-3

Reference Books:

- 1. John Yarbrough, "Digital Logic applications and Design", Cengage Learning, 2006, ISBN 13:978-81-315-0058-3
- 2. Norman B & Bradley, "Digital Logic and Design Principles", Wiley India Ltd, 2000, ISBN 978-81-265-1258-4.

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Digital Logic Design Lab		
Course Code: 241CSEESCP104	Semester: I / II	
Teaching Scheme: L-T-P: 0-0-2	Credit: 01	
Evaluation Scheme: ISE: 25	ESE Marks:	

Course Description:

Digital Logic Design This subject covers practical details of the subject Digital Logic Design and Memory organization in computers.

Course Objectiv	Course Objectives					
1	To provide hands on experience on construction of basic digital logic circuits					
2	To get practical experience on Demorgan's theorem, SOP and POS forms.					
3	To demonstrate verification of Full Adders, Subtractors, Gray to binary converters and vice versa					
4	To verify working of Flip-flops, Counters and Shift registers					

Sr. No	Experiment
1	Realization of functions using basic and universal gates (SOP and POS forms).
2	Study of Boolean algebra & De Morgan's theorem.(Verification of Theorem with truth table)
3	Realization of 4/5 variable K-maps.
4	Design and Realization of half /full adder and subtractor using basic gates and universal gates.
5	Design and Realization of Multiplexers and Demultiplexers.
6	Study of Flip-Flops: J-K, D, T, S-R.
7	Study of Registers and Counters.
8	Study of Bus Structure and Instruction Cycle.
9	Interfacing counter circuit with seven segment display.
10	Hand- on -constructin of various combinational circuits using CircuitVerse Simulator.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
104.1	Construct the truth table of various Logic Gates and combination circuits using logic gates.
104.2	Design, test, and evaluate various combinational circuits such as adders, subtractors, multiplexers, demultiplexers, decoders, etc.
104.3	construct flip-flops, counters, and shift registers
104.4	Simulate various combinational circuits using Circuit Verse Simulator.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes(POs)

POs Cos	BTL	1	2	3	4	5	6	7	8	9	10	11	12
104.1	2	1								2			
104.2	2	1	1			2				2			
104.3	2	2	2			3				2	2		1
104.4	2	1			1					2			

Text Books:

- 1. R.P.Jain, "Modern Digital Electronics", Tata McGraw-Hill, 4th Edition, 2010 ISBN 978-0-07-06691-16
- 2. Moris Mano, "Digital Logic and Computer Design", 2017, Pearson, ISBN 978-93-325-4252-5
- 3. W. Stallings, "Computer Organization & Architecture: Designing for performance", 10th Edition, 2016, Pearson Education/ Prentice Hall of India, ISBN-10: 0-13-410161-8 | ISBN-13: 978-0-13-410161-3

Reference Books:

- 1. John Yarbrough, "Digital Logic applications and Design", Cengage Learning, 2006, ISBN 13:978-81-315-0058-3
- 2. Norman B & Bradley, "Digital Logic and Design Principles", Wiley India Ltd, 2000, ISBN 978-81-265-1258-4.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Design Thinking Through Innovation				
Course Code: 241CSEVSECL101	Semester: I/II			
Teaching Scheme: L-T-P: 1-0-0	Credits: 01			
Evaluation Scheme: ISE: 25	ESE Marks:			

Prerequisites: Understanding, User-Centric Mindset, Collaboration and Teamwork, Curiosity and Open-

Mindedness, Effective Communication Skills, Learning Orientation, and Risk Tolerance.

Course Description:

The Design Thinking & Innovations subject aims to provide students with the tools and exposure to address problems using the design thinking process. The curriculum for "Design Thinking through Innovations" structured in such a way students learn to acquire both knowledge of design and practice of skills required to develop an attitude towards design. Being of the exemplary kinds, it focuses more on hands-on knowledge, learned by doing and acting upon challenges discovered within the community and surroundings.

Course Objectives:

1.	To Familiarize with Engineering Design Process and The basics of Design Thinking
2.	To Bring Awareness on Idea Generation to Solve the Problems
3.	To Familiarize with the various types of prototype and the techniques used for prototyping.

Course Outcomes (COs): At the end of the course, the students should be able to:

CO	Statements	BTL
101.1	Learn the Structured Approach of Engineering Design and the Relevance of Design and Design Thinking in Engineering & Understand Idea Generation Techniques to find solutions to Problems.	1
101.2	Understand the various types of prototypes and Inculcate the techniques used for prototyping.	2

Course Content:

Content	Duration
Unit I: Engineering Design, Design Thinking and Idea Generation	
• Introduction, Key Concepts of Design, A Simplified Process of Engineering Design	
• What is Design Thinking? - Its Importance, Socio-Economical Relevance, Principles, Origin,	
Process of Design Thinking, Relevance of Design and Design Thinking in Engineering	07 Hrs
• Introduction to Idea Generation, Idea Generation Techniques, Processes, Define the Problem,	
Needs v/s Wants, Identify Philosophy, Problem Solving Tools, Case Studies	
• Critical thinking: Fundamentals, Characteristics, Critical v/s Ordinary Thinking.	
• Critical thinking skills- linking ideas, structuring arguments, five pillars of critical thinking.	

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit II: Prototyping and Tools for Design - Innovation

- Prototyping: Introduction, Need, Process, Types, Fidelity for prototypes, Minimum Usable
 Prototype [MUP] Concept, challenges, etc.
- Prototyping for Digital & Physical products: Concept, What is unique in Digital and Physical Prototypes?

• Digital & Physical prototypes: Preparation; testing prototypes with users.

• Introduction to Different tools used for design and Innovation, such as Hand Saw (Wood, PVC, CPVC and Steel), Component cutter, Spanners, Allen key & Wrench (Flat, Ring, Adjustable), Solder Gun, Component cutter, Tweezer, Multi meter, Glue Gun, Hex saw, Cutter, Wire Stripper.

07 Hrs

Text Books:

Sr. No	Title	Author(s)	Publisher	Year
1.	Introduction to Design Thinking	S.Salivahanan, S.Suresh Kumar, D.Praveen Sam	Tata Mc Graw Hill, First Edition	2019
2.	The Design Thinking Playbook	Michael Lewrick	Wiley	2019
3.	Prototyping for Designers: Developing the best Digital and Physical Products	Kathryn McElroy	O'Reilly	2017

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1.	Design Thinking – New Product Essentials from PDMA	1 st	Michael G. Luchs, Scott Swan, Abbie Griffin	Wiley	2015
2.	101 Design Methods: A Structured Approach for Driving Innovation in Your Organization	1 st	Vijay Kumar	Wiley	2012

Online Resources:

Sr. No.	Online Resource Link	Source
1	Introduction to Design Thinking - Course (swayam2.ac.in) Design Thinking Full Course Design Thinking Process Design Thinking For Beginners Simplilearn - YouTube	Swayam (NPTEL) &YouTube
2	Thinking at IDEO - Insight, innovation, & a healthy dose of play	IDEO
3	INTRO (youtube.com)	YouTube
4	The Power of an Entrepreneurial Mindset Bill Roche TEDxLangleyED (youtube.com)	YouTube
5	https://www.ideou.com/pages/design-thinking	IDEO U
6	https://dschool.stanford.edu/	Stanford D school
7	https://www.designthinkersacademy.com/usa/	Design Thinking Institute
8	https://www.ibm.com/design/thinking/page/toolkit	
9	https://hbr.org/2018/09/design-thinking-is-fundamentally-conservative-and-preserves-the-status-quo	Design thinking ToolKit

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Design Thinking Through Innovation Lab			
Course Code: 241CSEVSECP102	Semester: I / II		
Teaching Scheme: L-T-P: 0-0-1	Credit: 01		
Evaluation Scheme: ISE: 25	ESE Marks:		

Prerequisites: Understanding, User-Centric Mindset, Collaboration and Teamwork, Curiosity and Open-

Mindedness, Effective Communication Skills, Learning Orientation, and Risk Tolerance.

Course Description:

The Design Thinking & Innovations subject aim at providing students with the tools and exposure to be able to address problems using the design thinking process. Design Thinking & Innovations is designed in such a way students learn to acquire both knowledge of design and practice of skills required to develop an attitude towards design. Being of the exemplary kinds, it focuses more on hands-on knowledge, learned by doing and acting upon challenges discovered within the community and surroundings.

Course Objectives:

1.	To Discuss Various Techniques of Idea Generation.
2.	To Explain the Various Tools Used for Innovation.
3.	To Discuss the Methods of Implementing Design Thinking in The Real World.
4.	To Discuss the Implementation of Creativity and Innovation.

Course Outcomes (COs):

At the end of the course, the student should be able to:

СО	Statements	BTL
105.1	Learn the Structured Approach of Engineering Design and the Relevance of Design and Design Thinking in Engineering & Understand Idea Generation Techniques to find out solutions to Problems.	1
105.2	Understand the various types of prototypes and Incorporate the techniques used for prototyping.	2

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Content

Sr. No.	Title of Experiments/Assignment List	Duration
01	Overview of Design Thinking: Ethical Design and Critiques, Generation of "IDEA", Problem Identification and Exercises.	02 Hrs
02	Brainstorming Sessions to Find out Solution for Identified Problems	02 Hrs
03	Prototyping and Modelling Challenge, Various Tools and Methodology Used for the Prototyping.	02 Hrs
04	Hands-On Demonstration of Different Tools used for Design & Innovation.	02 Hrs
05	Hands-On Demonstration of Soldering Machine, Function and Purpose of Soldering Machine.	02 Hrs
06	Explanation and Usage of Joining & Insulation Tools and Technics.	04 Hrs
07	Assembly and Disassembly of Two Wheel Drive Robot Based Vehicle.	02 Hrs
08	Micro Project: Group Formation and Idea Generation.	02 Hrs
09	Creation of Prototype and Innovative Solution.	02 Hrs
10	Test and Evaluation of Prototype.	02 Hrs
11	Report Drafting - Instructions & Practices.	02 Hrs
12	Presentation & Exhibition.	02 Hrs

Suggested Learning Resources: --

Reference Books:

Sr. no.	Name of Book	Author	Year	
1.	Design Thinking: Understand-Improve-Apply	S. G. Blank	2007	
2.	Design Thinking for Innovation Research and Practice	Walter Brenner, Falk	2016	
2.	Design Thinking for filliovation Research and Fractice	Uebernickel, Springer	2010	
3.	Business Design Thinking and Doing: Frameworks,	Angele M. Beausoleil	2022	
3.	Strategies and Techniques for Sustainable Innovation	Aligele W. Deausolell	2022	

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Historical Places in and Around Kolhapur District						
Course Code:241CSEIKS101 Semester: I/II						
Teaching Scheme L-T-P:2-0-0	Credits:02					
Evaluation Scheme ISE-I, MSE, ISE-II:10/30/10	ESE Marks:					

Curriculum Contents	Duration
Unit 01: Chhatrapati Shahu Maharaj: A King for Society	
• Introduction	
Life History	
• Contribution of Rajarshi Shahu Maharaj in various fields as a modern Social	07 Hrs
Reformer as Women Empowerment in the 19 th Century	
Development in Education	
Social Reservation and equality	
Agriculture	
• Industry	
Initiation for Radhanagari Village and Dam	
Unit 02: A Study of Khidrapur- Kopeshwar	
Life History of Khidrapur Kopeshwar Temple	
The Wonder of Khidrapur Kopeshwar Temple	
Swarga Mandap in Kopeshwar Temple	07 Hrs
Sabha Mandap, Antaral Kaksha of Kopeshwar Temple	
Beauty of Exterior Architecture of Kopeshwar Temple	
Mystery of Black stone	
Measures Suggested to Development of Khidrapur	
Unit 03: A Study of Panhala Fort and Pawankhind	
History of Panhala Fort	
Major Features: Andhar Bawadi	
Major Features: Kalavanticha Mahal, Ambarkhana	07 Hrs
Major Features: Dharma Koti, Sajja Koti	
Teen Darwaja, Raj Darwaja	
Rajdindi Bastion	
Journey from Panhalgad to Pawankhind by Chhatrapati Shivaji Raje	
Unit 04: A Study of Mahalaxmi Temple	
History and construction of Temple	
The Main Shrines Doorway	
Darshan and Kurma Mandap	07 Hrs
Ganapati Chowk, Garud Mandap	
Boundary wall, Entrances and complex	
Mahalaxmi Temple Timings	
Kiranostav Celebrations	

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

References:

- 1. Social Movements in India: A Review of Literature Ghanshy am ShahISBN 0761995145 New Delhi; Thousand Oaks: Sage Publications, 2004
- 2. Rajarshi Shahu Maharaj Jeevan Vakarya, editor Ramesh Patnage.
- 3. Shahu Chhatrapati Royal Revolutionary DhananjayKeer
- 4. Samajik Sanshodhan Padnativa Tantre Dr. Pradeep Aaglave.
- 5. Kalasekar. T. L: Khidrapur: Khojurao of Maharashtra.
- 6. Chothe R.G: Temples of Khidrapur, A heritage of India.
- 7. Kulkarni A. B : Kopeshwar temple of Khidrapur.
- 8. Gazetteer of Kolhapur District.
- 9. Eaton, Richard Maxwell (2005). The New Cambridge History of India
- 10. "Translations of Panhala inscriptions". Government of Maharashtra. Retrieved 19 March 2009.
- 11. "Mahalakshmi Temple Jewel Among Kolhapur Temples
- 12. "Inside Temples". mahalaxmikolhapur.com.

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Differential Equations Numerical Technique	
Course Code: 241CSBSCL103	Semester: II
Teaching Scheme: L-T-P: 3-0-0	Credits: 3
Evaluation Scheme ISE-I/MSE/ISE-II:10/30/10	ESE Marks: 50

Prior Knowledge of:	Formulae of Derivatives and Integration, Differential Equation,
	Statistics.

Course Objectives:

1.	To teach mathematical methodology.
2.	To develop mathematical skills and enhance logical thinking power of students.
3.	To provide students with skills in differential equations and numerical techniques.
4.	To imbibe graduates with mathematical knowledge, computational skills and the ability to deploy these skills effectively in solution of engineering problems.

Curriculum Details

Course Contents	Duration
 Unit 1: Ordinary Differential Equations of First Order and First Degree Definition of differential equation, order and degree of differential equation Exact differential equations Non - exact differential equations Linear differential equations Bernoulli's differential equations 	07 Hrs
 Unit 2: Applications of Ordinary Differential Equations Introduction of variable separable form. Orthogonal trajectories. (Cartesian form) Applications to simple electrical circuits Newton's law of cooling Rate of decay and growth 	07 Hrs
 Unit 3 Numerical methods to solve Ordinary Differential Equations Introduction Picard's method Taylor's series method Euler's method Runge - Kutta's method (Fourth order) 	07 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

 Unit 4: Numerical Solutions of Algebraic & Transcendental equations Introduction of Algebraic and Transcendental equations Bisection method Newton-Raphson method Regula-Falsi method Secant method 	07 Hrs
 Unit 5: Correlation and Regression Introduction, Types of correlation, Karl Pearson's coefficient of correlation Interpretation of the coefficients of corrections Computation of coefficient of correlation for ungroup data Lines of regression Calculations of equations of the lines of regression 	07 Hrs
 Unit 6: Frequency distribution and measure of central Tendency Frequency distribution, Continuous frequency distribution Graphical representation of a Frequency distribution- Histogram, frequency polygon Measure of central tendency- Arithmetic mean, median and mode Range, Quartile deviation Mean deviation, Standard deviation 	07 Hrs

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
1	Solve ordinary differential equations of first order and first degree.
2	Apply the knowledge of ordinary differential equation of first order and first degree.
3	Use the numerical methods to solve ordinary differential equations.
4	Apply the numerical techniques to solve algebraic &transcendental equations.
5	Describe the statistical data numerically by using correlation, regression and curve fittings.
6	Apply the knowledge to study the data given with respect to dispersion and measure of central tendency.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs COs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
1	2, 3	3	2	-		- 1	-		-				1
2	3	3	2										1
3	2,3	3	2			1							1
4	3	2	2			1							1
5	3	2	2			1							1
6	3	2	2			1							1

Text Books:

Text Double								
Sr. No Title		Edition	Author(s)	Publisher	Year			
1	Advanced Engineering Mathematics	7 th	Peter V.O'Neil	Cengage Learning	2012			
2	Advanced Engineering Mathematics	1 st	H.K. Dass	S. Chand Publications, New Delhi	2011			
3	A Text Book of Applied Mathematics	7 th	P.N.Wartikar, J.N.Wartikar	Vidyarthi Griha Prakashan, Pune.	2006			
4	Higher Engineering Mathematics	36 th	B.S. Grewal	Khanna Publishers	2001			

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Advanced Engineering Mathematics	5 th	Erwin Kreyszig	India Pvt, Ltd.	2014
2	Higher Engineering Mathematics	6 th	B.V.Ramana	Tata M/c Graw- Hill Publication	2010
3	Numerical Methods for Scientific and Engineering Computation	5 th	M.K.Jain	New Age International Pvt. Ltd New Delhi	2007
4	A Textbook of Engineering Mathematics	6 th	N.P.Bali, Iyengar	Laxmi Publication	2004

Useful Link /Web Resources:

- 1. DELNET- http://www.delnet.in
- 2. NDL-http://ndl.iitkgp.ac.in
- 3. N-LIST- http://www.nlist.inflib.ac.in
- 4. https://www.youtube.com/results?search_query=Dr+Navneet+Sangle

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Differential Equations Numerical Technique Tutorial		
Course Code: 241CSBSCP104	Semester: II	
Teaching Scheme: L-T-P: 0-0-1	Credits: 1	
Evaluation Scheme ISE: 25	ESE Marks: 50	

Prior Knowledge of:	Formulae of Derivatives and Integration, Differential Equation,		
	Statistics.		

Course Objectives:

1.	To teach mathematical methodology.
2.	To develop mathematical skills and enhance logical thinking power of students.
3.	To provide students with skills in differential equations and numerical techniques.
4.	To imbibe graduates with mathematical knowledge, computational skills and the ability to deploy these skills effectively in solution of engineering problems.

List of Tutorials

Tut. No.	Title of Tutorial	Duration
01	Ordinary Differential Equations: Exact and non-exact differential equations.	01Hr
02	Ordinary Differential Equations: Linear and non-linear differential equations.	01Hr
03	Applications of Ordinary Differential Equations: Orthogonal Trajectories. (Cartesian curves), Applications to Simple Electrical Circuits.	01Hr
04	Applications of Ordinary Differential Equations: Newton's law of cooling, Rate of Decay, and growth	01Hr
05	Numerical Solution of Ordinary Differentia Equations First Order and First Degree: Picard's method, Taylor's series method.	01Hr
06	Numerical Solution of Ordinary Differential Equations of First Order and First Degree: Euler's method, Runge-Kutta's method.	01Hr
07	Numerical Solutions of Algebraic & Transcendental Equations: Bisection method, Newton-Raphson method.	01Hr
08	Numerical Solutions of Algebraic & Transcendental Equations: Regula-Falsi method, Secant method.	01Hr

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

09	Numerical Solutions: Numerical Solutions using SCILAB/MATLAB	01Hr
10	Correlation and Regression: Computation of Correlation, Lines of regression	01Hr
11	Frequency distribution and measure of central Tendency: Measure of central tendency- Arithmetic mean, median and mode, Range, Quartile deviation, Mean deviation, Standard deviation	01Hr
12	Measure of central Tendency: Measure of central Tendency using SCILAB/MATLAB	01Hr

Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Advanced Engineering Mathematics	7 th	Peter V.O'Neil	Cengage Learning	2012
2	Advanced Engineering Mathematics	1 st	H.K. Dass	S. Chand Publications, New Delhi	2011
3	A Text Book of Applied Mathematics	7 th	P.N.Wartikar, J.N.Wartikar	Vidyarthi Griha Prakashan, Pune.	2006
4	Higher Engineering Mathematics	36 th	B.S. Grewal	Khanna Publishers	2001

Reference Books:

Reference books.					
Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Advanced Engineering Mathematics	5 th	Erwin Kreyszig	India Pvt, Ltd.	2014
2	Higher Engineering Mathematics	6 th	B.V.Ramana	Tata M/c Graw- Hill Publication	2010
3	Numerical Methods for Scientific and Engineering Computation	5 th	M.K.Jain	New Age International Pvt. Ltd New Delhi	2007
4	A Textbook of Engineering Mathematics	6 th	N.P.Bali, Iyengar	Laxmi Publication	2004

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Applied Chemistry	
Course Code: 241CSEBSCL107	Semesters: I and II
Teaching Scheme: L-T-P: 3 – 0 - 0	Credits: 3
Evaluation Scheme ISE-I/MSE/ISE-II: 50	ESE Marks: 50

Prior Knowledge of:	Periodic properties of elements, Basics of organic, inorganic,
	physical, and analytical chemistry

Course Objectives:

1.	Understand the principles and applications of sensors.
2.	Discuss the Basic concepts of electronic memory and display Systems
3.	Illustrate general synthesis and mechanisms of some advanced polymeric
	Materials and nanomaterials
4.	Evaluate the electrochemical energy storage systems such as lithium batteries and design for
	usage in electrical and electronic applications
5.	Interpret of extraction of metal from e-waste.
6.	Apply the theoretical aspects for understanding the water chemistry

Curriculum Details

Course Contents	Duration
 Unit 1: Water Chemistry Introduction, Types of impurities in natural water. Water quality parameters total solids, acidity, alkalinity, chlorides, COD and BOD. (definition, causes, significance) Hardness of water, types of hardness, units of hardness, numerical on hardness. Ill effects of hard water in steam generation in boilers (scale & sludge formation, caustic embrittlement and boiler corrosion) Treatment of hard water (Ion exchange and reverse osmosis process) • Biosensors for glucose detection. 	07 Hrs
 Unit 2: Sensors Introduction, working, principle and applications of conductometric sensors, electrochemical sensors, thermometric sensors (Flame photometry) and optical sensors (colorimetry). Hydrated gel sensor (P^H meter). Sensors for the measurement of dissolved oxygen (DO). Electrochemical gas sensors for SOx and NOx. Disposable sensors (DS): Introduction, principle, characteristics of disposable sensors, Advantages of DS over Classical sensors. 	07 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

(As Per National Education Policy 2020)	_
Unit 3: Materials for Memory and Display Systems	
Memory Devices:	
Introduction, basic concepts of electronic memory, Classification of electronic	
memory devices (organic, polymeric and hybrid material).	
Manufacturing of semiconducting chips.	
Green computing: Bio-composite based memory devices	
Display Systems:	07 Hrs
Nanomaterials and organic materials for display technology	07 1115
(Light absorbing and emitting materials) used in optoelectronic devices.	
• Liquid crystals display (LC's) –Introduction, classification, properties and	
application in Liquid Crystal Displays (LCD's).	
• Properties and application of Organic Light Emitting Diodes (OLED's) and	
light-emitting electrochemical cells	
H.'A F C A ID A T. I . I.	
 Unit 4: Energy System and Battery Technology Introduction, Classification of batteries (primary and secondary batteries). 	
• Construction, working, advantages, and applications of the carbon-zinc cell, Ni-Cd, and Li-	
ion battery as an electrochemical cell.	
Principle, Properties, and applications of Quantum dots sensitized solar cells	07 Hrs
(QDSSC's).	U/ Hrs
• Fuel cells: Concept, types of fuel cells and merits.	
 Construction, working and applications of phosphoric acid fuel cells and Hydrogen- oxygen fuel cell 	
Unit 5: Sustainable Chemistry and E-waste management:	
• Introduction, sources of e-waste, Composition, Characteristics, and Need of e-waste	
management.	
Toxic materials used in manufacturing electronic and electrical products, health	
hazards due to exposure to e-waste.	07 Hrs
• Recycling and Recovery: Different approaches of recycling (separation, thermal	07 1113
treatments, hydrometallurgical extraction, direct recycling).	
• Extraction of Metal from E-waste. Role of stakeholders in environmental management	
of e-waste (producers, consumers, recyclers, and statutory bodies).	
Unit 6: Engineering Advanced materials and Green Chemistry	
• Introduction, and classifications of polymer.	
Introduction, synthesis, properties & applications of Bakelite and Urea-formaldehyde	
resin.	
Conducting Polymers: Introduction, Synthesis & Mechanism of conduction in	
polyaniline.	
Biodegradable polymers: Introduction and their requirements. Synthesis, properties	
and applications of Polylactic acid.	07 Hrs
Green Chemistry:	
• Introduction, Aims, goals and applications.	
• Twelve principle of green chemistry.	
• Green Fuels: Introduction, construction and working of solar photovoltaic cell,	
advantages, and disadvantages.	
advantages, and disadvantages.	

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
107.1	Understand the principles and applications of sensors.
107.2	Discuss and assess the Basic concepts of electronic memory and display Systems
107.3	Illustrate general synthesis and mechanisms of some advanced polymeric Materials and nanomaterials
107.4	Evaluate the electrochemical energy storage systems such as lithium batteries and design for usage in electrical and electronic applications
107.5	Interpret the extraction of metal from e-waste and the role of stakeholders in the environmental management of e-waste.
107.6	Apply the theoretical aspects for understanding water chemistry

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Articulation Matrix. Mapping of Course Outcomes (COS) with Frogram Outcomes (FOS)													
POs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
107.1	3	3	-	-	1	ı	-	-	ı	-	ı	-	1
107.2	2	3	-	-	-	-	-	-	-	-	-	-	1
107.3	2	3	-	-	-	-	-	-	-	-	-	-	1
107.4	2	3	-	-	-	-	-	-	-	-	-	-	1
107.5	3	3	-	-	-	-	-	-	-	-	-	-	1
107.6	3	3	-	-	-	-	-	-	-	-	-	-	1

Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Functional and smart materials,		Chander Prakash, Sunpreet Singh, J. Paulo Davim	CRC Press, ISBN: 978-036- 727-510	2020,
2	A Textbook of Engineering Chemistry	12th	S. S. Dara, S. S. Umare	S. Chand & Company Ltd., New Delhi.	2011
3	A Text Book of Engineering Chemistry		Shashi Chawla	Dhanpat Rai & Co.	2017
4	A textbook of Engineering Chemistry		Jain and Jain,	Dhanpatrai Publication.	2015

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Reference Books:

Sr.	Title	Edition	Author(s)	Publisher	Year
No					
1	Energy storage and conversion devices: Supercapacitors, batteries, and hydroelectric cells,	1 st edition, I	Anurag Gaur, A. L. Sharma, Anil Arya.	CRC Press, SBN: 978-1-003-14176-1	2021
2	E-waste recycling and management: present scenarios and environmental issues	Vol. 33.	Khan, Anish, and Abdullah M. Asiri.	Springer, ISBN: 978-3-030-14186-8.	2019
3	Functional and smart materials,		Chander Prakash, Sunpreet Singh, J. Paulo Davim	CRC Press, ISBN: 978-036- 727-510	2020,
4	A Textbook of Engineering Chemistry	12 th	S. S. Dara, S. S. Umare	S. Chand & Company Ltd., New Delhi.	2011

Useful Link /Web Resources:

- 1. https://ndl.iitkgp.ac.in/
- 2. https://www.youtube.com/watch?v=faESCxAWR9k

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Applied Chemistry Laboratory						
Course Code:241CSEBSCP108 Semesters: I & II						
Teaching Scheme: L-T-P: 0-0-2	Credit: 1					
Evaluation Scheme: ISE: 25	ESE Marks:					

Prior Knowledge of:	Experiments based on titration, Handling of Glassware & Chemicals, and
	Preparation of Solutions.

Course Objectives:

1.	To test water quality parameters using various titration analysis methods
2.	To synthesize simple advanced materials and estimate concentration of elements in material's
3.	To know handling of glassware's and simple equipment's for chemical analysis.

List of Experiments-

Exp. No	Title of Experiments	Duration
01	Determination of total hardness of water sample by EDTA method (Complex metric Titration).	02Hrs
02	To determine the normality of given strong acid by titrating against strong alkali solution by conduct meter	02Hrs
03	To determine the normality of given weak acid by titrating against strong alkali solution by conductometer.	02Hrs
04	Determination pH of given solutions by pH meter.	02Hrs
05	Estimation of Iron from a solution by calorimetry.	02Hrs
06	Estimation of Nickel from a solution by calorimetry	02Hrs
07	To determine the approximate analysis of coal.	02Hrs
08	To study the Construction and working of Galvanic cell	02Hrs
09	To estimate amount of calcium from waste chalk.	02Hrs
10	Estimation of zinc metal from brass solution.	02Hrs
11	Preparation of urea-formaldehyde resin.	02Hrs
12	Preparation of phenol formaldehyde resin.	02Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

СО	Statements
108.1	Analys e hardness, acidity, alkalinity, and chloride content of water and percentage of elements in some alloys.
108.2	Produce various advanced materials and analyse aqueous solutions using instruments.
108.3	Perform various experiments by following written instructions.
108.4	Express involvement by understanding concepts in applied chemistry.

Course Articulation Matrix: Mapping of Course Outcomes (Cos) with Program Outcomes (PO's)

PO's Cos	BTL	1	2	3	4	5	6	7	8	9	10	11	12
108.1	3	3	1	1	1	ı	ı	1	1	1	ı	ı	1
108.2	3	3	-	-	-	-	-	-	-	-	-	-	1
108.3	3	3	-	-	-	-	-	-	-	-	-	-	1
108.4	3	3	-	-	-	-	-	-	-	-	-	-	1

Reference Books:

Sr.	Title	Edition	Author(s)	Publisher	Year
No					
1	Laboratory manual on engineering chemistry	1st	S. K. Bashin, Dr.Sudha Rani	Dhanpat Rai Publishingcompany Ltd.,New Delhi	2012
2	Engineering Chemistry	15 th	P. C. Jain,	Dhanpat Rai Publishing Company Ltd., New Delhi	2014

Useful Link /Web Resources:

1. https://www.vlab.co.in/broad-area-chemical-science

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Generative AI	
Course Code: 241CSEESCL105	Semester: I
Teaching Scheme: L-T-P: 3 – 0 - 0	Credits: 3
Evaluation Scheme: ISE-MSE Marks: 50	ESE Marks: 50

Course Description: Students will explore the basic principles of machine learning and neural networks, gaining insights into how AI systems learn from data to generate novel outputs. The course covers key areas of AI application, including natural language processing and computer vision, providing students with a broad perspective on the field's capabilities and potential.

Course Objectives:

- 1. To Explain the basic principles of Machine Learning.
- 2. To Describe the core concepts of neural networks and deep learning
- 3. To Distinguish between different generative models (e.g., GANs, VAEs)

Course Outcomes (COs):

Upon successful completion of this course, the students will be able to:

C105.1	Understand and explain the fundamentals of AI and generative AI
C105.2	Develop proficiency in prompt engineering and apply effective techniques for text generation
C105.3	Analyze and compare different types of generative models, including their capabilities.
C105.4	Evaluate the ethical implications, societal impact, and future potential of generative AI

Content	Hours
Unit 1: Introduction to AI and Generative AI	
Definitions of AI and generative AI.	5
Brief history and types of AI.	
Unit 2: Fundamentals of Generative AI	
"Neural networks, machine learning, deep learning.	7
How generative AI ""learns""?"	
Unit 3: Prompt Engineering and Text Generation "What is prompt engineering? Importance of prompts in generative AI. Techniques for effective prompt writing. How do text generation models work? Applications in writing, chatbots, and education."	7
Unit 4: Introduction to Generative Models What are generative models? Overview of different types (GANs, VAEs, etc.) Simple examples of content generation Generating simple images or melodies	7

School of Engineering & Management **Department of First-Year Engineering**

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit 5: Image and Art Generation Image generation techniques. Role of prompts in image generation	6
Unit 6: Ethical Considerations and Future of Generative AI Potential applications and impact on society Ethical considerations (bias, misinformation, etc.) Privacy and security concerns Discussing the future of AI	8

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs):

COs		Pos										
	1	2	3	4	5	6	7	8	9	10	11	12
C205.1	1				1							1
C205.2	1		2		1							
C205.3	1	2		1	1							
C205.4						3	2	3				1

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Generative AI Laboratory		
Course Code: 241CSEESCP106	Semester: II	
Teaching Scheme: L-T-P: 0 – 0 - 2	Credits: 1	
Evaluation Scheme: ISE Marks: 25	ESE-	

Course Description: This course provides an introduction to generative artificial intelligence (AI), covering fundamental concepts, Models, AI tools and applications. Students will learn about various generative models and tools used in creating content such as images, text, music, prompt engineering concepts and ethics.

Course Objectives:

- 1. To study basic principles of generative AI.
- 2. To study different types of generative models and their applications.
- 3. To give hands-on experiences with existing generative models and tools.
- 4. To explore ethical considerations and societal implifications of generative AI technologies.

Course Outcomes (COs):

Upon successful completion of this course, the students will be able to:

	•
C205.1	Understand and explain the fundamentals of AI and generative AI
C205.2	Develop proficiency in prompt engineering and apply effective techniques for text generation
C205.3	Analyze and compare different types of generative models, including their capabilities.
C205.4	Evaluate the ethical implications, societal impact, and future potential of generative AI

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs) and Program Specific Outcomes (PSOs):

COs		Pos										
	1	2	3	4	5	6	7	8	9	10	11	12
C205.1	1				1							1
C205.2	1		2		1							
C205.3	1	2		1	1							
C205.4						3	2	3				1

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

List of Ass		
Ass. No.	Name of Assignment	Hours
1	Use AIweirdness.com to explore simple text generation. (https://www.aiweirdness.com/)	2
2	Use Teachable Machine by Google to create a simple image classifier. (https://teachablemachine.withgoogle.com)	2
3	Use Neural Network playground to visualize how neural networks make decisions. (https://playground.tensorflow.org/)	2
4	Use GPT-3 playground or a similar tool to generate text. (https://studio.ai21.com/)	2
5	Create a simple chatbot using Dialogflow or Botpress.	2
6	Use DALL-E mini or Midjourney to create AI-generated art	2
7	Experiment with DeepArt.io to apply artistic styles to photos	2
8	Use Mubert to generate AI music .	2
9	Experiment with Google's Magenta studio for music creation	2
10	Use the What-If Tool by Google to explore machine learning models and dataset bias	2

Online Resources:

- 1. https://www.deeplearning.ai/courses/generative-ai-for-everyone/
- 2. https://www.coursera.org/learn/introduction-to-generative-ai
- 3. https://www.w3schools.com/gen_ai/gen_ai_prompt_intro.php
- 4. https://www.tutorialspoint.com/prompt_engineering/prompt_engineering_introduction.htm
- 5. https://www.youtube.com/@AI.Overpowered

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Professional Communication	
Course Code: 241CSEACEL102	Semester: I/II
Teaching Scheme L-T-P: 1-0-0	Credits: 01
Evaluation Scheme: - ISE: 25	ESE:

Prior knowledge of:	Basic English grammar, Basics of communication

Course Objectives:

1.	To make students learn important communicative situations, the basics of communication,
	and its significance in the corporate sector
2.	To sharpen listening, speaking, reading, and writing skills
3.	To facilitate them to draft office documents effectively
4.	To enhance career skills to make students industry-ready

Curriculum Details

Course Contents	Duration					
Unit 1 Language and Communication						
 Need for effective communication 						
 The process and levels of communication 						
Professional communication						
Communication networks/ flows						
 Forms and methods (verbal and non-verbal) of communication 						
Barriers to communication and solutions						
Unit 2 Introduction to LSRW						
• Listening Skills: Hearing and listening, Listening as an active skill; Types of						
Listening; Barriers to effective listening skills						
• Speaking Skills: Importance, Various oral business contexts/situations, Group						
communication, Preparing effective public speeches (Impromptu and Prepared)	03Hrs					
• Reading Skills : Benefits of effective reading, Types of reading (Skimming;						
Scanning, Intensive reading, Extensive reading) Overcoming common obstacles,						
Reading comprehension						
• Writing Skills: Importance, Paragraph writing techniques						
Unit 3 Professional Correspondence						
Official correspondence						
Principles, structure (elements)						
Layout (complete block, modified block, semi-block),						
Types (enquiry and reply, claim and adjustment)						
Office drafting	04 Hrs					
Writing notice, agenda, and minutes of the meeting						
Email writing						
Advantages and limitations						
Style, structure, and content						
Email etiquette						

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Unit 4 Career Skills and Ethics Resume and cover letter writing Types of resume Important features of selling resume Cover letter writing Job Interviews Interview preparation FAQs (Frequently Asked Questions) Guidance for IELTS, TOFEL and GRE Corporate etiquette and ethics

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
102.1	Implement verbal and non-verbal codes for effective communication
102.2	Demonstrate language learning skills- LSRW (Listening, Speaking, Reading, and Writing)
102.3	Compose business documents competently
102.4	Enhance employability and readiness for industry demand and career advancement

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
COs													
102.1	3	-	-	-	-	-	-	-	2	3	3	-	1
102.2	3		-	-	-	-	-	-	2	3	3	-	1
102.3	3		-	-	-	-	-	-	2	3	3	-	1
102.4	3	-	-	-	-	-	-	-	2	3	3	-	1

Suggested Learning Resources:

Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Technical	4 th	Meenakshi Raman &	Oxford University Press	2022
	Communication:		Sangita Sharma		
	Principles and Practice				
2	Personality	2^{nd}	Barun K. Mitra	Oxford University Press	2016
	Development and				
	Soft- Skills				
3	Communication Skills	2^{nd}	Sanjay Kumar &	Oxford University Press	2015
	Communication Skins		Pushp Lata		
4	Communication Skills	$3^{\rm rd}$	Meenakshi Raman &	Oxford University Press	2013
	Communication Skins		Sangeeta Sharma		

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Business Communication	2 nd	Urmila Rai	Himalaya	2014
			and S.M. Rai	Publishing House	
				Pvt. Ltd.	
2	A University Grammar of	1 st	Randolph	Pearson	2007
	English		Quirk and		
			S Greenbaum		
3	Effective Technical	2 nd	B. K.Mitra	Oxford University	2006
	Communication			Press	
4	Effective Technical	2 nd	M.Ashraf	McGraw Hill	2005
	Communication		Rizvi	Education	

Useful Links/Web Resources:

- 1. https://www.skillsyouneed.com
- 2. https://www.psychologytoday.com
- 3. https://www.britishcouncil.in
- 4. https://www.udemy.com
- 5. https://www.englishclub.com

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Professional Communication Laboratory							
Course Code: 241CSEVSECP103 Semester: I/II							
Teaching Scheme L-T-P: 0-0-2	Credit:01						
Evaluation Scheme: ISE Marks: 25	ESE Marks:						

Prior kn	rior knowledge of: Basic language learning and people skills						
Course (Objectives:						
1.	1. To familiarize students with English phonology and improve their pronunciation						
2.	To improve	To improve language learning skills (LSRW) by providing ample practice					
3.	To develop students' verbal and non-verbal communication						
4.	To cultivate creative thinking and workplace skills						

List of Lab Sessions

Session No	Title of Activities	Duration
01	Icebreaking: Introducing self and others	02Hrs
~-	Different ways of introducing self and others: demonstration	
02	Phonetics	02Hrs
	Introduction to phonetics - consonants, vowels and diphthongs, stress,	
	intonation in English with video samples	
03	Remedial English	02Hrs
	Vocabulary-building games and identifying errors revising rules of	
	English grammar	
04	Listening Practice	02Hrs
	Listening comprehension, strategies for effective listening with audio/video	
	samples	
05	Reading Practice	02Hrs
	Improving Comprehension Skills, Techniques for good comprehension	
06	Technical Writing Practice	02Hrs
	Paragraph writing, writing notices, agenda minutes of the meeting, email	
	writing	
07	Public Speaking	02Hrs
	Practicing extempore and prepared speeches	
08	Group discussion	02Hrs
	Group discussions on current topics	
09	Mock Meetings	02Hrs
10	Purposes, preparation, and procedure for conducting effective meetings	0.077
10	Mock Interviews	02Hrs
	Preparing for FAQs and facing mock interviews	
11	Creative Writing	02Hrs
4.5	Blog Writing	0.077
12	Film/Book Appreciation	02Hrs
	Showing short films and appreciation of them.	
	Reading novels or short stories and critical analysis of them.	

TO HAPUT

D. Y. Patil Education Society

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
103.1	Demonstrate effective LSRW skills
103.2	Articulate words accurately and create grammatically correct sentences
103.3	Deliver speeches and participate in GDs, business meetings, and mock interviews effectively
103.4	Draft business documents and blogs by following writing ethics

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

0001111	Course in the distriction is the plant of course outcomes (cos) with it of the course (i os)												
POs	BTL	1	`2	3	4	5	6	7	8	9	10	11	12
COs													
103.1	3	-	-	-	-	-	-	-	2	3	3	-	1
103.2	3	-	-	-	-	-	-	-	2	3	3	-	1
103.3	3	-	-	-	-	-	-	-	2	3	3	-	1
103.4	3	-	-	-	-	-	-	-	2	3	3	-	1

Suggested Learning Resources:

Text Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	A Practical Course in	1 st	J.K. Gangaj	PHI Learning Pvt.	2014
	Spoken English	1		Ltd	
2	English Language	2 nd	Nira Konar	PHI Learning Pvt.	2014
	Laboratories	2		Ltd	
3	Better English	2 nd	J.D.O Connor	Cambridge	1980
	Pronunciation	<i>L</i> "		University Press,	

Reference Books:

Sr. No	Title	Edition	Author(s)	Publisher	Year
1	Communication Skills	2 nd	Sanjay Kumar & Pushp Lata	Oxford University Press	2015
2	Technical Communication: Principles and Practice	2 nd	Meenakshi Raman & Sangita Sharma	Oxford University Press	2011

Useful Links/Web Resources:

- 1. https://www.indiabix.com
- 2. https://www.skillsyouneed.com
- 3. https://interviewbuddy.in
- 4. https://learnenglish.britishcouncil.org
- 5. https://www.fluentu.com

School of Engineering & Management **Department of First-Year Engineering**

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Elementary Data Structures & Algorithms								
Course Code: 241CSEPCCL101 Semester: II								
Teaching Scheme L-T-P: 2 – 0 - 0	Credits: 02							
Evaluation Scheme: - ISE:	ESE: - 50							

Prior knowledge of:	1.	Basic Knowledge of C
	2.	Basic Mathematical Approach

Course Objectives:

1.	
2.	
3.	

Curriculum Details

Course Contents	Duration
Unit 1 Basic of Data Structures	
Data structure- Definition, Types of data structures, Data Structure Operations,	04 Hrs
Algorithms: Complexity, Time and Space complexity. Barriers to communication and	04 1118
solutions	
Unit 2 Stacks and Queues	
Stack: Definition, operations, Array representation of stack, applications	0211
Queue: Definition, operations, Array representation of queue, applications, Circular	03Hrs
queue, Priority queue, Deque.	
Unit 3 Linked Lists	
Definition, representation, operations, implementation and applications of singly,	04 Hrs
doubly and circular linked lists. Linked representation of stack and Queue.	
Unit 4 Searching and Sorting Techniques	
Searching: Linear search, Binary search	02 II
Sorting: Bubble sort, Selection sort, Insertion sort, Merge sort, Quick sort, Heap Sort	03 Hrs
Complexity and analysis of Searching and Sorting Algorithms	

Course Outcomes (COs): After successful completion of the course, students will be able to:

CO	Statements
101.1	Understand fundamental data structures and their operations.
101.2	Implement and manipulate data structures using a programming language
1013	Apply data structures to solve real-world problems.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs COs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
101.1	1												1
101.2	2	3	2	2	2				1				2
1013	1	1	2	2	2				1				1

Text Books:

- 1. Schaum's Outlines Data Structures Seymour Lipschutz (MGH)
- 2. Data Structures- A Pseudo code Approach with C-Richard F. Gilberg and Behrouz A. Forouzon 2nd Edition

Reference Books:

- 1. Data Structure using C- A. M. Tanenbaum, Y. Langsam, M. J. Augenstein (PHI)
- 2. Fundamentals of Data Structures Horowitz, Sahani (CBS India)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Python Programming	
Course Code: 241CSEVSECL103	Semester: I/II
Teaching Scheme L-T-P: 1 – 2 - 0	Credits: 02
Evaluation Scheme: - ISE: -25	POE: - 25

Prior knowledge of:	Basic Knowledge of computers

Course Description:

This subject covers basic principles of programming and programming ethics through the python programming language.

Course Objectives:

	- MJ
1.	
2.	
3.	

Curriculum Details

Curriculum Details						
Course Contents	Duration					
Unit 1 Introduction to Python and Decision Structures						
Input, Processing, and Output: Introduction to programming and Python, Basic syntax,						
Displaying Output with the print Function, Comments, Variables, Operators, Reading	04 Hrs					
Input from the Keyboard, Performing Calculations						
Decision Structures: The if Statement, The if-else Statement, Comparing Strings, Nested						
Decision Structures and the if-elif-else Statement						
Unit 2 Repetition Structures and Functions						
Repetition Structures: Introduction to Repetition Structures, The while Loop: A						
Condition Controlled Loop, The for Loop: A Count-Controlled Loop, Calculating a						
Running Total, Sentinels, Input Validation Loops, Nested Loops	03Hrs					
Functions: Introduction to Functions, Defining and Calling a Void Function, Designing						
a Program to Use Functions, Local Variables, Passing Arguments to Functions, Global						
Variables and Global Constants, Introduction to Value-Returning Functions.						
Unit 3 Python Data structures and String						
Lists and Tuples: Sequences, Introduction to Lists, List Slicing, Finding Items in Lists						
with the in Operator, List Methods and Useful Built-in Functions, Copying Lists,	04 Hrs					
Processing Lists, Two Dimensional Lists, Tuples,	U4 IIIS					
Dictionaries and Sets: Operations and use.						
Strings: Basic String Operations, String Slicing, Testing, Searching, and Manipulating Strings.						
Unit 4 Modules and File Handling						
Modules: Writing Your Own Value-Returning Functions, The math Module, Storing						
Functions in Modules	03 Hrs					
Files: Introduction to File Input and Output Using Loops to Process Files, Processing						
Records, Exceptions.						

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

СО	Statements
103.1	Demonstrate use of decision and repetition structure in order to solve specific problem
103.2	Model a given big problem statement in to smaller parts to provide modular approach.
103.3	Choose proper data structure like list, touples, dictionaries etc. for solving given problem

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs COs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
103.1	1	-	•		2		-	1	-	-	-	-	1
103.2	1	-	-	-	2			1	-	-	-	-	1
103.3	1	1	•	•	2			1	-	-	-	1	1

Text Books:

- 1. Ethics for the Information Age 6th edition Michael J. Quinn
- 2. Starting Out with Python 5th Tony Gaddis Pearson March 17th 2021

Core Python Programming 3rd R. Nageswara Rao Dreamtech Press 1 Jan 2018

Reference Books:

1. Python: The Complete Reference Indian Edition Martin C. Brown MGH March 2018

School of Engineering & Management **Department of First-Year Engineering**

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Python Programming Laboratory					
Course Code: 241CSEVSEC104 Semester: I/II					
Teaching Scheme L-T-P: 0 – 0 - 2	Credits: 01				
Evaluation Scheme: - ISE: -25					

Prior knowledge of:	Basic Knowledge of computers

Course Description:

This subject covers basic principles of programming and programming ethics through the python programming language.

Course Objectives:

1.	
2.	
3.	

List of Experiment

Session No	Title of Activities	Duration
01	Program based on the decision structures (if, If else, nested if else, if elif else)	02Hrs
02	Program to demonstrate use of different types of looping statements.	02Hrs
03	1. Program to write and use different types of user defined function	02Hrs
04	Programs to demonstrate the use of various built-in functions in Python,	02Hrs
05	Program demonstrating operations and use of List and Touple	02Hrs
06	Program demonstrating operations and use of Dictionary and set.	02Hrs
07	Program to demonstrate modules	02Hrs
08	Program to perform CURD operations in a file using file handling.	02Hrs
09	Implement stack operations	02Hrs
10	Implement Queue operations	02Hrs

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Outcomes (COs): After successful completion of the course, students will be able to:

СО	Statements
104.1	Demonstrate use of decision and repetition structure in order to solve specific problem
104.2	Model a given big problem statement in to smaller parts to provide modular approach.
104.3	Choose proper data structure like list, touples, dictionaries etc. for solving given problem

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

POs COs	BTL	1	2	3	4	5	6	7	8	9	10	11	12
104.1	1				2			1					1
104.2	1				2			1					1
104.3	1				2			1					1

Text Books:

- 1. Ethics for the Information Age 6th edition Michael J. Quinn
- 2. Starting Out with Python 5th Tony Gaddis Pearson March 17th 2021 Core Python Programming 3rd R. Nageswara Rao Dreamtech Press 1 Jan 2018

Reference Books:

2. Python: The Complete Reference Indian Edition Martin C. Brown MGH March 2018

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Liberal Learning Course (LLC)				
Course Code: 241CSECCA101	Semester: I/II			
Teaching Scheme: L-T-P: $0-0-4$	Credits: 02			
Evaluation Scheme ISE-50 ISE Marks: 50				

Syllabus Contents (All Clubs)	Duration
 PAINTING Memory Drawing - Human sketching, Object Drawing Perspective Mem 2D Drawing - Basic Drawing Elements Principles, Compositions, Colou Scheme/Texture 3D Drawing - 3D Basic Forms, 3D Sketching, Light effect (shade/shadov 	ar 30 Hrs
2. DANCE	
 Hip-Hop. Information about elements. Old School- New School steps. Variations in old school new school steps. How to use old-school steps in dance. Choreography on 2 songs 	30 Hrs
3. YOGA & MEDITATION	
 Breathing practices and pranayama Sectional Breathing Yoga deep Breathing Concept of bandha and mudra Rictation of pranava mantra Anter Maun Breath Mediation Om dhayna 	30 Hrs
 4. Music Introduction of Music Taal Practical Raag (Harmonium Swar) Group Song Presentation 	30 Hrs
 5. GUITAR Introduction of Guitar Guitar Tuning Open strings Exercise Finger Exercise Scales and Intervals Major Scale Minor Scale Strumming Pattern Lead 	30 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

	(As Per National Education Policy 2020)	
6.	INTERIOR DESIGN	
	6.1 Primary elements in Architecture	
	• Elements of design such as point, line, shape, form, mass, space, color and texture patterns, light and shade; understanding the relations between them.	
	6.2 Principles in Architectural Design	30 Hrs
	 Principles of design such as harmony (unity), proportions, contrast, scale, balance (symmetric & asymmetric), rhythm (pattern), emphasis, scale proportion Finger Exercise 	20 5
	6.3 Color Theory	
	 Properties of color, color schemes, color value, intensity, Color texture, psychological effect of color. 	
	 Apply the knowledge of color theory and rendering techniques for Interior design assignments and portfolio Scales and Intervals 	
	 Introduction to Architectural lettering, size, and notation of drawing, symbolic representation of building elements and material, and other features as per standard practice. 	
	 Assignments included for Sketch plan measure drawing lettering and architectural symbols. 	
7.	ADVENTURE	
7.1	Introduction to Adventure Activities	
	 Introduction 	
	 Benefits of adventure activities. 	
	 how to plan an adventure activity and prepare for safety. 	
7.2	Safety Protocols, Risk Management and Basic First Aid for Adventure	
	Activities	
	Equipment safety check	
	Emergency response procedure	
	 Risk assessment and mitigation strategies. 	
	 Common injuries and ailments in adventure settings 	
	 Wound care and basic treatments 	
	Heat and cold-related illnesses	
7.3		
	Basic cycle/bike maintenance and repair	00 11
	Cycling activity	08 Hrs
	Long-distance trekking and camping (One Day in Nature)	
7 4	Route planning and logistics Route planning and logistics	
7.4	Environmental Stewardship and study of Wildlife	00 II
	Leave No Trace principles	08 Hrs
	Environmental impact of adventure activities	
	Sustainability practices and conservation efforts Unbited programments and professores of different appairs.	
	 Habitat requirements and preferences of different species. Interactions between wildlife and their environment. 	
	 Interactions between whathe and their environment. Conservation strategies for maintaining viable populations. 	
	 Visit to Sanctuary -Dajipur, Radhanagari, Kolhapur, Jungle safari. 	
	1 1511 to building Dujipui, Rudhanagari, Romapui, sungid sarari.	
<u> </u>		

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum (As Per National Education Policy 2020)

(As Per National Education Policy 2020)	
7.5 Adventure Sports: Self-defense and Personal Development, Leadership.	
 Benefits of Self-Defense Sports Physical fitness and conditioning Improved self-confidence and self-esteem Enhanced coordination, agility, and reflexes Stress relief and mental discipline Practical self-defense skills and situational awareness Example:- Wrestling, boxing, Karate, Martial arts, taekwondo, lathikati Building resilience and mental toughness Teamwork and collaboration in challenging environments Leadership skills and decision-making under pressure 	4Hrs
7.6 Study of Historical Monuments	
 Historical background and evolution of Indian Culture. History of Maratha Empire. Visit Forts, temples, Palace, etc VISIT TO VERTICAL ADVENTURE PARK, MASAI PATHAR-JEUR Zipline Zorbing ball Bungee Ejection High rope course Rappelling Parasailing Sports Climbing Slack Line Rock climbing 	4Hrs
8. Foreign Language-German	
 Introducing self and others Grammar: WH questions, personal pronouns, simple sentences, verb conjugation Themes: hobbies, the week, numbers, the alphabet, months, seasons Grammar: articles, plural, the verbs to have and to be basic directions / Grammar: definite and indefinite articles; negation - kein and nicht; Form Filling Can understand and use familiar, everyday expressions and very simple sentences, which relate to the satisfying of concrete needs. Can introduce him/herself and other as well as ask others about themselves – e.g. where they live, who they know and when they own – and can respond to questions of this nature. Can communicate in a simple manner if the person they are speaking to speaks slowly and clearly and is willing to help. 	nat e
9. Photography.	
 9.1 Introduction to Digital Photography Understanding film and paper photography. Learning about the digital revolution. How photos are used today. 	30 Hrs

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum (As Par National Education Policy 2020)

(As Per National Education Policy 2020)	
9.2 Digital Basics	
 Digital image method of storing and processing digital image: Raster and Vector method Doodling. Representation of digital image: Resolution – Pixel Depth 9.3 Digital Basics 	
 Windows Operating System Concept of Internet Image transportation through floppy, CD, zip and Internet. 9.4 Image Editing	
 Image editing through image editing Software like Adobe Photoshop – Adjustment of Brightness, Contrast, Tonal and Colour Values – Experimenting with Level and Curve. 10. Art & Craft 	
10.1 Craft Skills	4 Hrs
 Cutting and Pasting Techniques - collage. Paper folding Techniques - Origami. 	
10.2 D.I.Y Project	
Craft project using recycled materialDoodling.	4 Hrs
10.3 Field Trip	
 Cultural visit Outdoor sketching Visit to the exhibition and museum 	8 Hrs
 10.4 Workshop Pottery Making Lantern Making 	6 Hrs
10.5 Cultural Activities	
 Drama, skit, Open Mic, Singing, Dancing, etc. 	6 Hrs
 Film Making Introduction of filmmaking Short videos, Reels Visit to Film Industry Kolhapur, Information regarding instrument used in film industry 	30 Hrs
12.Coding Club	6 Hrs
 Basics of C programming Introduction Datatypes Operators Keywords 	

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Control Structure	
• If	
• If Else	
• Else If	
• For	
• While	6 Hrs
• Switch	
Functions	
Types of Functions	
Overloading & Overriding	4 Hrs
• Examples	
Arrays	
Basics of Arrays	4 Hrs
Basics of ArraysOne Dimensional Array	
· · · · · · · · · · · · · · · · · · ·	
Two-Dimensional Array Practice Problems	4 Hrs
r ractice r roblems	4 Hrs

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Capstone Project		
Course Code: 241CSEMC104	Semester: II	
Teaching Scheme: L-T-P:0-0-0	Credits: Grade (Mandatory Course)	
Evaluation Scheme ISE: 50	ESE Marks:	

Course Objectives:

1	To inculcate independent learning by problem-solving in a social context.
2	To engage students in rich and authentic learning experiences.
3	To emphasize learning activities that are long-term, interdisciplinary, and student-centric.
4	To provide every student the opportunity to get involved either individually or as a group so as to develop team skills and learn professionalism.

Curriculum Details

As per the approved structure of the curriculum, students will be allowed to do capstone projects during the second semester of B. Tech. program.

Topics:

A Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, new equipment fabrication, correlation and analysis of data, software development, or a combination of these.

Group Structure:

Working in supervisor/mentor-monitored groups; the students plan, manage, and complete a task/project/activity which addresses the stated problem.

- 1. There should be a team/group of 4 -5 students
- 2. A supervisor/mentor teacher assigned to individual groups

Selection of Project:

The project demo model for learning is recommended. The model begins with the identifying of a problem, often growing out of a question or "wondering". This formulated problem then stands as the starting point for learning. Students design and analyze the problem within an articulated interdisciplinary or subject frame or based on Rural/Social internship.

A problem can be theoretical, practical, social, technical, symbolic, cultural, and/or scientific and grows out of students' wondering within different disciplines and professional environments. A chosen problem has to be exemplary. The problem may involve an interdisciplinary approach in both the analysis and solving phases.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

By exemplarity, a problem needs to refer back to a particular practical, scientific, social and/or technical domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry.

There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content, and structure of the activity.

- 1. A few hands-on activities that may or may not be multidisciplinary.
- 2. Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize, and present their learning.
- 3. Activities may include- Solving real life problem, investigation, /study and Writing reports of in-depth study, fieldwork.

Recommended Guidelines and phases:

Capstone project is learning through activity. One of the teachers can be appointed as guide for capstone project group. Following are the recommended guidelines that will work as an initiator and facilitator in process of completion of Capstone project.

- 1. In first week of commencement of 2nd semester, let the guide create awareness about capstone project (what, why, and how) among the students. Convey students expected outcomes, assessment process and evaluation criteria.
- 2. Get groups of students registered preferably 4-5 students per group.
- 3. Assign guide to each group.
- 4. Provide guidelines for title identification (Problem can be some real-life situation that needs technology solutions. This situation can be identified by rural/social internship, by meeting people around, visiting various industries, society, and institutes. The solution can be prototype, model, convertible solutions, survey and analysis, simulation, and similar).
- 5. Let students submit the problem identified in prescribed format (Problem Statement, Initial Survey for topic finalization, Abstract, Software, Hardware required, Title)
- 6. Guide can approve the problem statements based on feasibility and learning outcomes expected for first year engineering students
- 7. Guide is to monitor progress of the task during phases of project work. Broadly phases may include- requirements gathering, preparing a solution, technology design for the solution.
- 8. Weekly monitoring and continuous assessment record are to be maintained by guide.
- 9. Get the report submitted at the end of semester.

Student is required to prepare a capstone project and file containing documentary proofs of the activities done by him. The evaluation will be done by expert committee constituted by HoD/Departmental capstone project In-charge/ faculty mentor.

(Deemed To Be University)

School of Engineering & Management Department of First-Year Engineering

Computer Science & Engineering Curriculum

(As Per National Education Policy 2020)

Course Title: Rural/Social Internship	
Course Code: 241CSEMC102	Semester: I
Teaching Scheme: L-T-P:0-0-0	Credits: Grade (Mandatory Course)
Evaluation Scheme ISE: 50	ESE Marks:

Course Objectives:

	To provide possible opportunities to learn, understand and sharpen the real time technical /
1	managerial skills required at the job.
2	To exposure to the current technological developments relevant to the subject area of training.
3	To expose students to the engineer's responsibilities and ethics.
4	To understand the social, economic and administrative considerations that influence the
	working environment of industrial organizations
5	To gain experience in writing technical reports/projects.
6	To understand the social, economic, and administrative considerations that influence the
	working environment of industrial organizations

Curriculum Details

As per the approved structure of curriculum, students will be allowed to do internship during the first semester of B. Tech. program. During the internship, students are required to visit villages/wards/small industries/organizations etc

For following activities

- 1. Prepare and implement a plan to create local job opportunities.
- 2. Prepare and implement a plan to improve education quality in the village.
- 3. Preparing an actionable DPR for Doubling the village Income.
- 4. Developing a Sustainable Water Management system.
- 5. Prepare and improve a plan to improve the health parameters of villagers.
- 6. Developing and implementing Low-Cost Sanitation facilities
- 7. Prepare and implement a plan to promote Local Tourism through Innovative Approaches
- 8. Implement/Develop Technology solutions that will improve quality of life.
- 9. Prepare and implement solutions for energy conservation.
- 10. Prepare and implement a plan to Skill village youth and provide employment.
- 11. Develop localized techniques for Reduction in construction Costs.
- 12. Prepare and implement a plan for sustainable growth of the village.
- 13. Setting of Information imparting club for women leading to contribution to social and economic issues.
- 14. Developing and managing an Efficient garbage disposable system.
- 15. Contribution to any national-level initiative of the Government of India. For eg. Digital India/ Skill India/ Swachh Bharat Internship etc

Every student is required to prepare a file containing documentary proofs of the activities done by him. The evaluation will be done by an expert committee constituted by the HoD/Departmental Internship In-charge/faculty mentor.