#### D. Y. PATIL DEEMED TO BE UNIVERSITY SCHOOL OF ENGINEERING AND MANAGEMNET Teaching and Evaluation Scheme from Year 2024-25 (as per NEP-2020) B. Tech. Data Science Engineering (SEMESTER- III)

**Teaching Scheme** Theory **Practical** Sr. Course Total **Course Code Course Name Contact Hrs** OE/ No. Type Credits ISE MSE ESE INT Marks L P T PoE 1 24DSEU3P01 PCC Probability & Statistics 3 3 20 30 50 100 2 24DSEU3P02 PCC Data Structures 3 3 20 30 50 100 --3 24DSEU3P03 PCC Data Structures Laboratory 1 2 25 25 50 4 24DSEU3P04 PCC Programming Lab - I 3 2 2 \_ 50 50 100 5 24DSEU3M05 Fundamentals of Data Science 2 2 50 MDM-I 50 6 24DSEU3O06 OEC-I\$ **Data Science for Engineers** 3 3 20 30 50 100 Data Science for Engineers Lab 7 24DSEU3O07 OEC-I\$ 25 25 1 2 ----\_ 8 24DSEU3F08 CEP/FP Domain Specific Mini Project 2 25 50 -4 ----25 9 24DSEU3V09 VEC Environmental Studies-I 2 2 50 50 Economics and Management for 10 24DSEU3H10 **HSSM** 2 2 50 50 AC 2\* 50\* 11 24DSEU3D11 Liberal Learning 24DSEU3D12 Finishing School Training - III 2\* 50\* 12 AC Total 22 **17** 10 0 675

#### Note:

\$ - Open & Distance Learning

\* - Values are not included in total marks

Min. Marks for Passing: 40% of total marks of individual course



| Course Code: | 24DSEU3P01                 |   | L | Т | Р | Credit |
|--------------|----------------------------|---|---|---|---|--------|
| Course Name: | <b>Probability and Sta</b> | 3 | 0 | 0 | 3 |        |

**Basic Probability Theory** 

## **Course Description:**

This course plays important role in Data Science. This course provides fundamentals of probability and statistics which required for Data Science. This course focuses on probability theory, probability distribution, testing hypothesis, curve fitting, linear programming and

Optimization techniques and recurrence relation.

| Course | Outcomes:                                                                        | After the completion of the course the student will be able to -                                                       |  |  |  |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| CO1    | <b>apply</b> the fun                                                             | apply the fundamental concepts of probability theory.                                                                  |  |  |  |  |  |  |  |  |  |  |
| CO2    |                                                                                  | olve basic problems in probability theory, including problems involving he binomial. Poisson and normal distributions. |  |  |  |  |  |  |  |  |  |  |
| CO3    |                                                                                  | tand tests for hypothesis and its significance.                                                                        |  |  |  |  |  |  |  |  |  |  |
| CO4    | 1                                                                                | apply the recurrence relation to solve the counting problems and                                                       |  |  |  |  |  |  |  |  |  |  |
| CO5    | <b>make</b> use of method of least squares to fit the curves for bivariate data. |                                                                                                                        |  |  |  |  |  |  |  |  |  |  |

CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 2   |     |     | 1   |     |     |     |     |      |      |      |      |      |
| CO2 | 3   | 2   |     |     | 1   |     |     |     |     |      |      |      |      |      |
| CO3 | 2   | 2   |     |     | 1   |     |     |     |     |      |      |      |      |      |
| CO4 | 2   | 2   |     |     | 1   |     |     |     |     |      |      |      |      |      |
| CO5 | 2   | 2   |     |     | 1   |     |     |     |     |      |      |      |      |      |

| - 100 000 |                                 |           |                                                     |
|-----------|---------------------------------|-----------|-----------------------------------------------------|
| SN        | Assessment                      | Weightage | Remark                                              |
| 1         | In Semester Evaluation 1 (ISE1) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2         | Mid Semester Examination (MSE)  | 30%       | 50% of course contents                              |
| 3         | In Semester Evaluation 2 (ISE2) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 4         | End Semester Examination (ESE)  | 50%       | 100% course contents                                |



## Unit 1 Probability Theory

6 Hours

Introduction to Probability

Set Theory and Events

Axioms and Properties of Probability

**Conditional Probability** 

Bayes' Theorem

#### **Unit 2 Probability Distribution Functions**

6 Hours

Introduction, Elementary theory of probability, Random variable

Discrete probability distribution, Continuous probability distribution

Binomial distribution

Poisson distribution

Normal distribution

## **Unit 3 | Testing of hypothesis**

6 Hours

Introduction, Statistical hypothesis (Simple and Composite), Null hypothesis, Alternative hypothesis

Critical region, Type I and Type II errors

Level of significance

Test for Goodness of fit of chi square distribution

t- distribution

#### Unit 4 | Recurrence Relation

6 Hours

Introduction, Definition of recurrence relation, Linear recurrence relation with constant coefficients

Construction of recurrence relation

Solution of Homogeneous recurrence relation

Solution of non-homogeneous recurrence relation

#### **Unit 5 | Curve Fitting**

6 Hours

Fitting of curve by method of lest squares

Fitting of straight lines

Fitting of exponential curve

Fitting of second degree parabolic curve

#### **Unit 6** Linear Programming and Optimization Techniques

6 Hours

Introduction to Linear Programming Problems, Formulations of LPP

Basic Concepts and Terminology

Graphical Solution Method (for two variables)

Simplex Method

Big M-Method

Duality in Linear Programming, Dual Simplex Method

Solving the Primal using the Dual

#### Text Books:

- 1. Probability and Statistics for Engineers and Scientists—8th Edition Walpole, Myers, Myers, Ye (Pearson Education Inc.)
- 2. Numerical Methods in Engineering and Science 11th Edition- Dr. B. S. Grewal Khanna Publishers, Delhi
- 3. Advanced Engineering Mathematics- 7th Edition- H. K. Dass, S Chand S. Chand ublishing
- 4. Operations Research 11th Edition S. D. Sharma Kedar Nath & Ram Nath

- 1. Applied statistics and Probability for Engineers 4th Edition Douglas C Montgomery, George C Runger, Wiley Asia Student Edition
- 2. Statistics for Management 6th Edition Richard I Levin, David S Rubin Prentice Hall India
- 3. Probability and Statistics 5th Edition Purna Chandra Biswal PHI Learning Private Limited, Eastern Economy Edition
- 4. Operations Research 9th Edition H. A. Taba Pearson



| Course Code: | 24DSEU3P02      | _ |   |   |   |   |
|--------------|-----------------|---|---|---|---|---|
| Course Name: | Data Structures |   | 3 | 0 | 0 | 3 |

- 1. Basic Knowledge of C
- 2. Basic mathematical Approach

## **Course Description:**

The course is designed to develop skills to design and analyze simple linear and non linear data structures. It strengthen the ability to the students to identify and apply the suitable data structure for the given real world problem. It enables them to gain knowledge in practical applications of data structures

| Course | Outcomes:                                                        | After the completion of the course the student will be able to -                   |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1    | Illustrate the                                                   | concepts of Data Structures                                                        |  |  |  |  |  |  |  |  |
| CO2    | Identify the appropriate data structure for specific application |                                                                                    |  |  |  |  |  |  |  |  |
| CO3    | Choose appropriate sorting and searching algorithms.             |                                                                                    |  |  |  |  |  |  |  |  |
| CO4    | Outline the s                                                    | Outline the solution to the given software problem with appropriate data structure |  |  |  |  |  |  |  |  |
| CO5    | · · · · ·                                                        |                                                                                    |  |  |  |  |  |  |  |  |

CO-PO Mapping:

| <br>е.р |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1     | 1   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2     | 2   | 3   | 2   | 2   | 2   |     |     |     | 1   |      |      |      |      | 1    |
| CO3     | 1   | 1   | 2   | 2   | 2   |     |     |     | 1   |      |      |      |      | 1    |
| CO4     | 1   | 3   | 1   | 2   | 1   |     |     |     | 1   |      |      |      |      | 3    |
| CO5     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

| Assess | ment Scheme:                 |       |           |                                                     |
|--------|------------------------------|-------|-----------|-----------------------------------------------------|
| SN     | Assessment                   |       | Weightage | Remark                                              |
| 1      | In Semester Evaluation 1 (IS | SE1)  | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2      | Mid Semester Examination     | (MSE) | 30%       | 50% of course contents                              |
| 3      | In Semester Evaluation 2 (IS | SE2)  | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 4      | End Semester Examination     | (ESE) | 50%       | 100% course contents                                |



#### Unit 1 | Basic of Data Structures

4 Hours

Data structure- Definition, Types of data structures, Data Structure Operations, Algorithms: Complexity, Time and Space complexity.

#### Unit 2 Stacks and Queues

7 Hours

Stack: Definition, operations, Array representation of stack, applications

Queue: Definition, operations, Array representation of queue, applications, Circular queue, Priority queue,

#### Unit 3 | Linked Lists

8 Hours

Definition, representation, operations, implementation and applications of singly, doubly and circular linked lists. Linked representation of stack and Queue.

Unit 4 | Trees

7 Hours

Terminology, representation, binary tree, traversal methods, binary search tree, AVL tree (Introduction), Heaps-Operations and their applications

Unit 5 Graphs

6 Hours

Basic concept of graph theory, storage representation, graph traversal techniques- BFS and DFS

#### Unit 6 | Searching and Sorting Techniques

7Hours

Searching: Linear search, Binary search

Sorting: Bubble sort, Selection sort, Insertion sort, Merge sort, Quick sort, Heap Sort

Complexity and analysis of Searching and Sorting Algorithms

#### **Text Books:**

- 1. Schaum's Outlines Data Structures Seymour Lipschutz (MGH)
- 2. Data Structures- A Pseudo code Approach with C Richard F. Gilberg and Behrouz A. Forouzon 2nd Edition

- 1. Data Structure using C- A. M. Tanenbaum, Y. Langsam, M. J. Augenstein (PHI)
- 2. Fundamentals of Data Structures Horowitz, Sahani (CBS India)



| Course Code: | 24DSEU3P03          |  | L | T | Р | Credit |
|--------------|---------------------|--|---|---|---|--------|
| Course Name: | Data Structures Lab |  |   |   | 2 | 1      |

- 1. Basic Knowledge of C
- 2. Basic mathematical Approach

## **Course Description:**

The course is designed to develop skills to design and analyze simple linear and non linear data structures. It strengthen the ability to the students to identify and apply the suitable data structure for the given real world problem. It enables them to gain knowledge in practical applications of data structures

| Course | Outcomes:    | After the completion of the course the student will be able to - |  |  |  |  |  |  |  |  |  |
|--------|--------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CO1    | Implement th | ne Various Data Structures                                       |  |  |  |  |  |  |  |  |  |
| CO2    | Implement th | mplement the various sorting and searching algorithms.           |  |  |  |  |  |  |  |  |  |
| CO3    | Compare the  | Compare the complexities of various algorithms                   |  |  |  |  |  |  |  |  |  |
| CO4    |              |                                                                  |  |  |  |  |  |  |  |  |  |

## CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 1   | 1   |     | 1   | 1   |     |     |     |      |      |      | 1    | 2    |
| CO2 | 3   | 1   | 1   |     | 1   | 1   |     |     |     |      |      |      |      | 1    |
| CO3 | 3   | 3   | 2   | 3   | 3   |     |     |     | 1   | 1    | 1    |      | 1    | 3    |
| CO4 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

| , 100000 | ment beneme.                   |           |                                                     |
|----------|--------------------------------|-----------|-----------------------------------------------------|
| SN       | Assessment                     | Weightage | Remark                                              |
| 1        | In Semester Evaluation (ISE)   | 50%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2        | End Semester Examination (ESE) | 50%       | Practical Oral Exam                                 |



#### **List of Experiments:**

- 1. Write a C program to implement operations on Stack using array
- 2. Write a C program to implement operations on Linear Queue using array
- 3. Write a C program to implement operations on Circular Queue using array
- 4. Write a C program to implement operations on Singly Linked list
- 5. Write a C program to implement operations on Doubly Linked list
- 6. Write a C program to implement operations on Circular Linked list
- 7. Write a C program to implement Searching Techniques
- 8. Write a C program to implement Bubble sorting Techniques
- 9. Write a C program to implement Selection Sort Technique
- 10. Write a C program to implement Insertion Sort Technique
- 11. Write a C program to implement BST and its traversal
- 12. Write a C program to implement BFS and DFS



| Course Code: | 24DSEU3P04          | L | Т | Р | Credit |
|--------------|---------------------|---|---|---|--------|
| Course Name: | Programming Lab - I | 2 | 0 | 2 | 3      |

Procedural Programming Language (C Language)

## **Course Description:**

This course introduces students to the principles of object-oriented programming using C++. Students will develop practical skills through hands-on coding exercises and projects, learning to design and implement efficient, reusable, and maintainable code using OOP concepts.

| Course                                                              | Outcomes:                                                                                    | After the completion of the course the student will be able to -                  |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| CO-1: explain object oriented concepts, principles and techniques.  |                                                                                              |                                                                                   |  |  |  |  |
| CO-2:                                                               | create well-str                                                                              | uctured classes with appropriate data members and member functions, demonstrating |  |  |  |  |
| proper encapsulation principles.                                    |                                                                                              |                                                                                   |  |  |  |  |
| CO-3:                                                               | CO-3: apply various object-oriented features to solve real-life problems using C++ language. |                                                                                   |  |  |  |  |
| CO-4: demonstrate an understanding of generic programming concepts. |                                                                                              |                                                                                   |  |  |  |  |

## CO-PO Mapping:

|     |     |     |     |     |     |     |     | _   | _   | _    |      |      |      |      |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1 |     |     |     |     |     |     |     |     | 1   | 1    |      | 3    |      |      |
| CO2 | 1   | 1   | 2   |     | 3   |     |     | 2   | 1   | 2    |      |      | 3    | 3    |
| CO3 | 1   | 2   | 2   |     | 3   |     |     | 2   | 1   | 1    |      | 3    | 3    | 3    |
| CO4 | 1   | ·   |     |     | 3   |     |     |     | 1   |      | ·    |      | 2    |      |

| 7.00000. | nent seneme.                   |           |                                                     |
|----------|--------------------------------|-----------|-----------------------------------------------------|
| SN       | Assessment                     | Weightage | Remark                                              |
| 1        | In Semester Evaluation         | 50%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2        | End Semester Examination (ESE) | 50%       | 100% course contents                                |
| 3        |                                |           |                                                     |
| 4        |                                |           |                                                     |



#### Unit 1 Pointers & Structures in C

6 Hours

Pointers: What Are Pointers?, Pointer Variables, The Pointer Operators, Pointer Expressions, Pointers and Arrays, Array of Pointers, Initializing Pointers, Pointers to Functions and structures, C's Dynamic Allocation Functions. Structures: Structures, Arrays of Structures, Passing Structures to Functions, Structure Pointers, Unions, Macro

## Unit 2 Fundamentals of C++ Programming

8 Hours

C++ Program Structure, variables, operators, Input/output – I/O streams and standard I/O devices, cin and associated functions, cout and formatted output. User Defined function - declaration, definition & calling function, storage classes, scope rules, function - default arguments. Reference and reference arguments to the function. Pointer variables, new and delete operator, dynamic arrays.

Class & Objects: Object Oriented fundamentals, Class and object - concept and need, Class declaration, Class members - member variables and functions, access specifiers, implementation of member functions. Object Declaration, Accessing class members, class scope, . Constructors, invoking a constructor, constructors and default

Unit 3 Inheritance 4 Hours

Inheritance: concept, implementation, base classes and derived classes, members in base classes and derived classes, overriding base class members, UML notations for inheritance, constructors of derived and base classes, destructor in derived class, Inheritance as public, protected and private Composition (Aggregation) and association – concept, implementation and UML Notation

#### Unit 4 | Polymorphism

4 Hours

Polymorphism: Need, concept, implementation using function overloading, Multiple Inheritance, function overriding, virtual function, pure virtual function, abstract classes, Friend function and friend classes, accessing base class functions from derived class objects, accessing derived class functions from base class objects. Operator overloading: fundamentals of operator overloading, overloading binary operators, overloading unary operator

#### **Unit 5** | **Generic Programming with Templates**

4 Hours

Introduction to Generic Programming, Concept and benefits, Type-independent code Function Templates: Syntax and basic usage, Multiple template parameters, Explicit instantiation and specialization

Class Template: Syntax and implementation

#### **Text Books:**

- 1. Object oriented Programming in C++ 3rd Edition-R.Lafore (Galgotia Publications)
- 2. C++programming John Thomas Berry(PHI)
- 3. Object –Oriented Analysis & Design: Understanding System Development with UML 2.0, Docherty, Wiley India Ltd.

#### **Reference Books:**

1. C++ Programming with language - Bjarne Stroustrup, AT & T



| Course Code: | 24DSEU3M05                   | _ | L | T | Р | Credit |
|--------------|------------------------------|---|---|---|---|--------|
| Course Name: | Fundamentals of Data Science |   | 2 |   |   | 2      |

Basic knowledge of computer, Basic knowledge of Mathematics

## **Course Description:**

The aim of the course is to get basic knowledge about data science and its processes. This course also aims to visualize the complex data using different data visualization tools. It also provides different statistical methods to perform data analysis.

| Course | Outcomes:                                                                  | After the completion of the course the student will be able to - |  |  |  |
|--------|----------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| CO1    | CO1 Summarize the basic concepts in data science.                          |                                                                  |  |  |  |
| CO2    | Identify the data science process for the problem solving.                 |                                                                  |  |  |  |
| CO3    | Choose the appropriate data visualization technique for the given problem. |                                                                  |  |  |  |
| CO4    | CO4 Use different statistical methods for data analysis.                   |                                                                  |  |  |  |

# CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO2 | 2   | 1   |     | 1   |     |     |     |     |     |      |      |      | 2    |      |
| CO3 | 1   | 2   |     |     | 2   |     |     |     |     |      |      |      | 3    |      |
| CO4 | 2   |     |     | 1   |     |     |     |     |     |      |      |      |      |      |

| Assessr | ment Scheme:                   |           |                      |
|---------|--------------------------------|-----------|----------------------|
| SN      | Assessment                     | Weightage | Remark               |
| 1       | End Semester Examination (ESE) | 50%       | 100% course contents |



#### Unit 1 Data Science and its scope

4 Hours

What is Data Science, A Brief History, Difference between Data Science and Data Analytics, Knowledge and Skills for Data Science Professionals, Some Technologies used in Data Science, Benefits and uses of Data Science, Facets of Data.

## Unit 2 Data Science Process

6 Hours

Overview, Defining research goals and creating a project charter, Retrieving data, Cleansing, integrating, and transforming data, Exploratory data analysis, Build the models, Presenting findings and building applications on top of them.

## Unit 3 Data Visualization

5 Hours

Introduction to data visualization, Visual encoding, Data visualization software, Data visualization libraries, Basic data visualization tools, Specialized data visualization tools, Advanced data visualization tools, Visualization of geospatial data, Data visualization types

## **Unit 4 | Statistical Data Analysis**

6 Hours

Role of statistics in data science, Kinds of statistics - Descriptive statistics, Inferential statistics, Probability theory - Random variables, Independence, Sample space, Odds and risks, Expected values, Standard errors, Bayesian probability, Probability distribution

#### **Text Books:**

- 1. Davy Cielen, Arno D. B. Meysman, Mohamed Ali, "Introducing Data Science", Manning Publications.
- 2. DR. Gypsi Nandi, DR. Rupam Kumar Sharma, "Data Science Fundamentals and Practical Approaches", BPB Publications, India , ISBN 978-93-89845-662

- 1. DR. Amar Sahay, "Essentials of Data Science and Analytics", O'REILLY Publication.
- 2. https://onlinecourses.nptel.ac.in/noc21 cs23/preview



| Course Code: | 24DSEU3O06           |        | L | T | Р | Credit |
|--------------|----------------------|--------|---|---|---|--------|
| Course Name: | Data Science for Eng | ineers | 3 |   |   | 3      |

| Course Prerequsites: |
|----------------------|
|----------------------|

| 1. Fundamentals of Data Science |  |
|---------------------------------|--|
|---------------------------------|--|

# Course Description:

This course introduces students to data analysis and visualization in the field of exploratory data science.

| Course Outcomes:                                                                                     |                | After the completion of the course the student will be able to -                |  |
|------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------|--|
| CO1                                                                                                  | Describe a flo | ow process for data science problems and classify them into standard typology . |  |
| CO2 Use R codes for data science solutions and correlate results to the solution approach followed . |                |                                                                                 |  |
| CO3                                                                                                  | Construct use  | e cases to validate approach and identify modifications required.               |  |

# CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 3   | 3   | 3   | 3   | 3   |     |     |     |      |      |      |      | 2    |
| CO2 | 1   | 2   | 2   | 3   | 3   | 1   |     |     |     |      |      |      | 3    | 3    |
| CO3 | 1   | 1   | 1   | 2   | 2   |     |     |     |     |      |      |      | 2    | 3    |

| SN | Assessment                      | Weightage | Remark                                              |
|----|---------------------------------|-----------|-----------------------------------------------------|
| 1  | In Semester Evaluation 1 (ISE1) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2  | Mid Semester Examination (MSE)  | 30%       | 50% of course contents                              |
| 3  | In Semester Evaluation 2 (ISE2) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 4  | End Semester Examination (ESE)  | 50%       | 100% course contents                                |



| <u> </u> | C         |   |
|----------|-----------|---|
| ( Alirca | Contents: | , |
|          |           |   |

| course contents:        |                                                                                  |               |
|-------------------------|----------------------------------------------------------------------------------|---------------|
| Unit 1 Introduction     | to R                                                                             | 6 Hours       |
| R Studio, Variables ar  | nd datatypes in R, Data frames, Arithmetic,Logical and Matrix operations in R,   | Advanced      |
| programming in R _ F    | functions, Control structures, Data visualization in R Basic graphics.           |               |
| Unit 2 Linear algebi    | ra for data science                                                              | 8 Hours       |
| Algebraic view - vecto  | ors, matrices, product of matrix & vector, rank, null space, solution of over-de | termined set  |
| of equations and pse    | udo-inverse) Geometric view - vectors, distance, projections, eigenvalue decc    | mposition.    |
| Unit 3 Statistics       |                                                                                  | 8 Hours       |
| Descriptive statistics  | , notion of probability, distributions, mean, variance, covariance, covariance r | matrix,       |
| understanding univar    | iate and multivariate normal distributions, introduction to hypothesis testing   | g, confidence |
| interval for estimates  |                                                                                  |               |
| Unit 4 Optimization     | 1                                                                                | 6 Hours       |
| Optimization, Typolo    | gy of data science problems and a solution framework.                            |               |
| Unit 5 Logsitic Regr    | ession                                                                           | 6 Hours       |
| Classification using lo | gistic regression.                                                               |               |
| Unit 6 Classification   | n and clustering                                                                 | 6 Hours       |
| Classification using kl | NN and k-means clustering                                                        |               |
|                         |                                                                                  |               |

#### **Text Books:**

- 1. R for Data Science Hadley Wickham & Garrett Grolemund (O'Reilly Media) Units 1, 3
- 2. Linear Algebra and Its Applications Gilbert Strang (Wellesley-Cambridge Press) Unit 2
- 3. Introduction to Statistical Learning with R James, Witten, Hastie, Tibshirani (Springer) Units 4, 5, 6

- 1. The Art of R Programming Norman Matloff (No Starch Press) Unit 1
- 2. Matrix Computations Gene H. Golub & Charles F. Van Loan (Johns Hopkins University Press) Unit 2
- 3. All of Statistics Larry Wasserman (Springer) Unit 3
- 4. Numerical Optimization Jorge Nocedal & Stephen J. Wright (Springer) Unit 4
- 5. Applied Logistic Regression David W. Hosmer Jr. & Stanley Lemeshow (Wiley) Unit 5
- 6. Pattern Recognition and Machine Learning Christopher M. Bishop (Springer) Unit 6



| Course Code: | 24DSEU3O07           |            | L |
|--------------|----------------------|------------|---|
| Course Name: | Data Science for Eng | ineers Lab | 0 |

| Course Code: | 24DSEU3O07                     | _ | L | T | Р | Credit |
|--------------|--------------------------------|---|---|---|---|--------|
| Course Name: | Data Science for Engineers Lab |   | 0 | 0 | 2 | 1      |
|              |                                | - |   |   |   |        |

1. Fundamentals of Data Science

#### **Course Description:**

This course introduces students to practical data analysis and visualization techniques in the field of exploratory data science through hands-on laboratory experiments using R programming language.

| Course Outcomes: |     | After the completion of the course the student will be able to -                                                                 |
|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CO1              |     | ata science workflows in R environment and demonstrate proficiency in data<br>, visualization, and basic statistical operations. |
| CO2              | ''' | lgebra concepts, statistical methods, and optimization techniques to solve data science ng R programming.                        |
|                  |     | recute classification and clustering algorithms, evaluate their performance, and validate gh comprehensive case studies.         |

## CO-PO Mapping:

| • |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|   |     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|   | CO1 | 2   | 2   | 2   | 3   | 3   |     |     |     |     |      |      |      | 3    | 3    |
|   | CO2 | 3   | 2   | 2   | 3   | 3   |     |     |     |     |      |      |      | 3    | 3    |
|   | CO3 | 3   | 3   | 3   | 3   | 3   | 3   |     |     |     |      |      |      | 3    | 3    |

| Assessment Sche | eme:       |           |                                        |
|-----------------|------------|-----------|----------------------------------------|
| SN              | Assessment | Weightage | Remark                                 |
| 1               | Internal   | 50%       | Practical performance and internal POE |
| 2               | ESE        | 50%       | POE                                    |

| Course Contents | s:                                                    |         |  |  |
|-----------------|-------------------------------------------------------|---------|--|--|
| Experiment 1:   | periment 1: Introduction to R and RStudio Environment |         |  |  |
| Experiment 2    | Data Structures and Data Frames in R                  | 2 Hours |  |  |
| Experiment 3:   | Functions and Control Structures                      | 2 Hours |  |  |
| Experiment 4:   | Data Visualization using R Graphics                   | 2 Hours |  |  |
| Experiment 5:   | Linear Algebra Operations for Data Science            | 2 Hours |  |  |
| Experiment 6:   | Descriptive Statistics and Probability Distributions  | 4 Hours |  |  |
| Experiment 7:   | Logistic Regression for Classification                | 4 Hours |  |  |
| Experiment 8:   | Implement k-NN classification                         | 2 Hours |  |  |
| Experiment 9:   | Implement k-means clustering                          | 2 Hours |  |  |

#### Text Books:

- 1. R for Data Science Hadley Wickham & Garrett Grolemund (O'Reilly Media)
- 2. The Art of R Programming Norman Matloff (No Starch Press)
- 3. Introduction to Statistical Learning with R James, Witten, Hastie, Tibshirani (Springer)

- 1. R in Action Robert Kabacoff (Manning Publications)
- 2. Data Mining with R Luis Torgo (Chapman & Hall/CRC)



| Course Code: | 24DSEU3F08                   | L | T | P | Credit |
|--------------|------------------------------|---|---|---|--------|
| Course Name: | Domain Specific Mini Project |   |   | 4 | 2      |
|              |                              |   |   |   | -      |

- 1. Data Structures
- 2. Problem Solving Using C
- 3. Software Engineering

#### **Course Description:**

This course emphasis on a problem-based learning approach. It is a group activity where students have to present an idea / solution for the problem chosen. Then requirement analysis and design specification of the system is to be developed by the students. This is followed by software design, implementation, testing and finally demonstrate the results obtained. This course helps the students to learn how to analyze the demands of a customer and represent them in the form of software requirements specification (SRS) document including quality requirements. Ultimately this course enhances students programming skills and enable them to learn how to perform requirement analysis, system designing, coding, testing and report writing.

| Cours | e Outcomes:                                                                      | After the completion of the course the student will be able to -                          |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1   | Define approp                                                                    | riate problem statement for real world problems.                                          |  |  |  |  |  |  |  |  |
| CO2   | Organize an effective project plan with clear objectives and prepare a synopsis. |                                                                                           |  |  |  |  |  |  |  |  |
| CO3   | Design the var                                                                   | ious modules of the project to provide a solution to the problem with the help of various |  |  |  |  |  |  |  |  |
| C03   | design tools.                                                                    |                                                                                           |  |  |  |  |  |  |  |  |
| CO4   | Develop the pr                                                                   | oposed system using suitable development platform. Able to present their work and prepare |  |  |  |  |  |  |  |  |
| C04   | technical proje                                                                  | ect report.                                                                               |  |  |  |  |  |  |  |  |
| 1     |                                                                                  |                                                                                           |  |  |  |  |  |  |  |  |

CO-PO Mapping:

| <br>P | <b>8</b> |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------|----------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|       | PO1      | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| CO1   | 3        | 3   |     | 1   |     |     |     | 1   | 1   |      | 3    |      |      |      |
| CO2   | 3        | 3   |     | 1   | 1   | 1   | 1   | 1   | 3   | 3    | 2    | 2    | 2    |      |
| CO3   |          | 1   | 2   |     | 2   |     |     | 1   | 3   | 2    | 3    | 3    | 3    | 3    |
| CO4   |          | 1   | 2   |     | 2   |     |     | 1   | 3   | 3    | 2    | 3    | 3    | 2    |

| SN | Assessment            |             | Weightage | Remark                                  |
|----|-----------------------|-------------|-----------|-----------------------------------------|
| 1  | In Semester Evaluatio | n (ISE)     | 50%       | Problem identification and Design       |
| 2  | End Semester Examin   | ation (ESE) | 50%       | Coding, Testing and Creating Repository |



- 1. The Project should be undertaken preferably by a group of 3-4 students.
- 2. These students will jointly work and implement the project.
- 3. The group will select a project with the approval from the domain expert panel and submit the name of the project with a synopsis.
- 4. The Project should consist of defining the problem and analyzing it, designing the solution and implementing it using a suitable programming language.
- 5. Presentation and demonstration based on the above work is to be given by the group for ISE.
- 6. The work will be jointly assessed twice in a semester by an internal domain expert panel. No externally implemented projects work will be allowed. Student has to follow every project phase himself in a group.
- 7. Hard copy of project report of the work done is to be submitted along with the softcopy of the project during ESE.

Project topics may be selected from following domains:

- a. Real world applications in Data Analytics
- b. Probability and Statistics
- c. Data Preprocessing
- d. Web Page design
- e. Web Scrapping
- f. Healthcare Analytics
- g. Analytics using modern tools & techniques.



| Course Code: | 24DSEU3V09          | _      |
|--------------|---------------------|--------|
| Course Name: | Environmental Studi | es - I |

| L | T | P | Credit |
|---|---|---|--------|
| 2 |   |   | 2      |

1. Understanding of Environmental Education course

# **Course Description:**

The main objective of course is to create awareness among students regarding environmental issues and its impact on society. Knowledge regarding environmental components, its degradation and protection of environment is need for sustainable future ahead.

| Course | Outcomes:                                                                           | After the completion of the course the student will be able to -                          |  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1    | Understand tl                                                                       | ne scope and importance of Environmental awareness and Sustainable development            |  |  |  |  |  |  |  |  |
| CO2    | Understand various Environmental issues due to development.                         |                                                                                           |  |  |  |  |  |  |  |  |
| CO3    | Understand various modes of Environmental management through techno and legislation |                                                                                           |  |  |  |  |  |  |  |  |
| CO4    | Acquire prob report.                                                                | lem solving attitude through actual field experience and report it in the form of a field |  |  |  |  |  |  |  |  |

# CO-PO Mapping:

|   |    | PO1 | PO2 | РО3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| С | O1 | 1   |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| С | O2 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| С | О3 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| С | O4 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |

| SN | Assessment Weightage Remark    |     |                                                     |  |  |
|----|--------------------------------|-----|-----------------------------------------------------|--|--|
| 1  | In Semester Evaluation (ISE)   | 10% | Assignment, Test, Quiz, Seminar, Presentation, etc. |  |  |
|    | Mid Semester Exam              | 30% | 50%ofcourse contents                                |  |  |
|    | In Semester Evaluation (ISE)   | 10% | Assignment, Test, Quiz, Seminar, Presentation, etc. |  |  |
| 2  | End Semester Examination (ESE) | 50% | 100%course contents                                 |  |  |



# Unit 1 Our Environment

5 Hours

Introduction to Environment, Scope of Environmental Studies, Importance of Environmental Awareness, Concept of Sustainability, Sustainable development: History and Goals, Environmental Ethics and Sustainability Ethics, Population Growth and its Impact on Environmental Health

# Unit 2 Development and Environmental Health

8 Hours

Natural resources: Natural Resources: Types (Renewable and Non-renewable), Developmental Benefits, Forest: Benefits and Problems (Deforestation), Biodiversity: Importance, Threats, Conservation, Ecosystems: Importance, Problems, Ecological Restoration, Air: Benefits and Problems (Pollution, Climate Change), Water: Benefits and Problems (Depletion, Pollution), Soil/Land: Benefits and Problems (Degradation, Fertility Loss, Desertification), Minerals: Benefits and Problems (Mining, Overexploitation, Pollution), Energy Resources: Benefits and Problems (Depletion, Energy Crisis), Urbanization and Environmental Health, Urban Problems and Solid Waste: MSW Effects, Plastic, Hazardous Waste, E-Waste

# Unit 3 Environmental Management

8 Hours

Renewable Energy Technologies (Biogas, Biofuel, Hydrogen, etc.), Pollution Abatement: 5R, ZLD, Carbon Credit, Bio Remedies, Soil/Land Reclamation and Sustainable Agriculture, Environmental Impact Assessment (EIA), Environmental Audit, ISO 14001 Certification, Role of CPCB and MPCB in Environmental Protection, Emerging Environmental Technologies: GIS, Remote Sensing, IoT, Smart Bins, Waste-to-Energy, Recycling Automation, Circular Economy Practices, Sustainable Packaging, Community Engagement, Decentralized Waste Treatment, Zero-Waste Initiatives, Environmental Legislation: Environmental Protection Act, Air Act, Water Act, Solid Waste Management Act, Hazardous Waste Management Rules, E-Waste (Management) Rules, 2022.

# Unit 4 Field Project Work

5 Hours

Case studies based on field visit (Each student must complete a project on an environmental issue and propose solutions)

#### Text Books:

1. Erach Bharucha – Textbook of Environmental Studies for Undergraduate Courses

Publisher: University Grants Commission / Orient Blackswan

ISBN: 9788173715402

2. Benny Joseph – Environmental Science and Engineering

Publisher: McGraw Hill Education

ISBN: 9789339221266

3. Anubha Kaushik & C.P. Kaushik – Perspectives in Environmental Studies

Publisher: New Age International Publishers

ISBN: 9788122439802



#### **Reference Books:**

1. Rajagopalan – Environmental Studies: From Crisis to Cure

Publisher: Oxford University Press

ISBN: 9780198067691

2. S.K. Dhameja – Environmental Studies

Publisher: S.K. Kataria & Sons

ISBN: 9789350141014

3. A.K. De – Environmental Chemistry

Publisher: New Age International Publishers

ISBN: 9788122419460

4. P.D. Sharma – Ecology and Environment

Publisher: Rastogi Publications

ISBN: 9788171337033

5. S.C. Santra – Environmental Science Publisher: New Central Book Agency

ISBN: 9788173810732

6. N. Basak – Environmental Engineering Publisher: McGraw Hill Education

ISBN: 9789339205181

7. Ministry of Environment, Forest and Climate Change (MoEFCC) – Reports and Surveys

(Available at: https://moef.gov.in)



| Course Code: | 24DSEU3H10                      | _ | L | T | Р | Credit |
|--------------|---------------------------------|---|---|---|---|--------|
| Course Name: | Economics and Management for IT |   | 2 |   |   | 2      |

Basic knowledge of computer

## **Course Description:**

The course is intended to provide basic understanding of Economics and Management to engineering students with following aspects –

- 1. To impart knowledge, with respect to concepts of management information system.
- 2. To expose the students to the characteristic and applications of Decision Support Systems.
- 3. To help the students to understand different trends in current information system technology and also IT Tools & Techniques for Business operations.

|   | Course | Outcomes:                                       | After the completion of the course the student will be able to - |  |  |  |  |  |  |  |  |
|---|--------|-------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|   | CO1    | Explain the co                                  | plain the concepts of system development management life cycle.  |  |  |  |  |  |  |  |  |
| Ī | CO2    | Describe scop                                   | Describe scope and objective of management information system.   |  |  |  |  |  |  |  |  |
|   | CO3    | Develop the o                                   | Develop the decision making skills and practices.                |  |  |  |  |  |  |  |  |
|   | CO4    | Elaborate the different corporate case studies. |                                                                  |  |  |  |  |  |  |  |  |

CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     |     |     |     |     |     |      | 2    | 1    | 1    |      |
| CO2 | 2   |     |     |     |     |     |     |     |     |      | 2    | 1    | 1    |      |
| CO3 | 2   |     |     |     |     |     |     |     |     |      | 2    | 1    | 1    |      |
| CO4 | 2   |     |     |     |     |     |     |     |     |      | 2    | 1    | 1    |      |

| A33C331 | Herit Scheme. |           |        |
|---------|---------------|-----------|--------|
| SN      | Assessment    | Weightage | Remark |
| 1       | ESE           | 50 Marks  |        |
| 2       |               |           |        |
|         |               |           |        |
|         |               |           |        |



## **Unit 1 | Management Information System**

4 Hours

Conceptual foundations of information systems; Information theory; Information resource management; Types of information systems; Systems development - Overview of systems and design; System development management life-cycle, designing for online and distributed environments; Implementation and control of project.

## **Unit 2 | Scope and Objectives of MIS**

6 Hours

MIS meaning and role, MIS concepts, Management science structure, Information flow in management, MIS, for management support, Planning with MIS, control with MIS. Problem solving & decision making, Development of MIS, strategic & project planning for MIS.

## **Unit 3 Enhancing Management Decision Making**

5 Hours

Decision support systems (DSS) – understanding DSS, characteristics components, major DSS applications. Group decision support systems (GDSS), - elements, characteristics, how GDSS can enhance group decision - making? Executive support systems (ESS) – role of ESS in the organization, developing ESS, benefits of ESS.

Unit 4 Case Studies 6 Hours

Web Publishing: types of websites, Web surfing, E- commerce, B2B, B2C, C2C, E-commerce security issues, Ethical issues.

#### **Text Books:**

1. Management of Information systems, Gordon B. Davis & Margreth H. Olson, Pearson Edition

- 1. MIS Concepts & Design by Robert C. Murdik. PHI 2nd Edition
- 2. Information system by H.F. & Abraham, S., Database System Concepts, McGraw Hill
- 3. Engineering Economics, R.Paneerselvam, PHI publication
- 4. Modern Economic Theory, By Dr. K. K. Dewett& M. H. Navalur, S. Chand Publications



#### D. Y. PATIL DEEMED TO BE UNIVERSITY SCHOOL OF ENGINEERING AND MANAGEMNET Teaching and Evaluation Scheme from Year 2024-25 (as per NEP-2020)

Feaching and Evaluation Scheme from Year 2024-25 (as per NEP-2020)

B. Tech. Data Science Engineering (SEMESTER- IV)

|            | 20 Teem 2 at a second 2 ingline and (02.1.2512.1.1) |        |                                     |         |             |        |   |     |       |     |        |     |                |
|------------|-----------------------------------------------------|--------|-------------------------------------|---------|-------------|--------|---|-----|-------|-----|--------|-----|----------------|
| C          |                                                     |        |                                     | Te      | aching      | Scheme |   | Т   | heory |     | Practi | cal | T-4-1          |
| Sr.<br>No. | Course Code                                         | Course | Course Name                         | C 1!4-  | Contact Hrs |        |   | ICE | MCE   | PCE | INT    | OE/ | Total<br>Marks |
| INU.       |                                                     | Type   |                                     | Credits | L           | P      | Т | ISE | MSE   | ESE | INI    | PoE | Marks          |
| 1          | 24DSEU4P01                                          | PCC    | Discrete Mathematical Structure     | 3       | 3           | -      | - | 20  | 30    | 50  | -      | -   | 100            |
| 2          | 24DSEU4P02                                          | PCC    | Design and Analysis of Algorithm    | 3       | 3           | -      | - | 20  | 30    | 50  | -      | -   | 100            |
| 3          | 24DSEU4P03                                          | PCC    | Programming Lab - II                | 4       | 2           | 4      | - | -   | -     | -   | 50     | 50  | 100            |
| 4          | 24DSEU4M04                                          | MDM-II | Data Analysis and Visualization     | 2       | 2           | -      | - | -   | -     | 50  | -      | -   | 50             |
| 5          | 24DSEU4O05                                          | OEC-II | Introduction to Data Engineering    | 2       | 2           | -      | - | -   | -     | 50  | -      | -   | 50             |
| 6          | 24DSEU4A06                                          | AEC    | Soft Skill                          | 2       | -           | 4      | - | -   | -     | -   | 25     | 25  | 50             |
| 7          | 24DSEU4N07                                          | VSEC   | Web Application Development - I     | 2       | 1           | 2      | - | -   | -     | -   | 25     | 25  | 50             |
| 8          | 24DSEU4V08                                          | VEC    | Environmental Studies-II            | 2       | 2           | -      | - | -   | -     | 50  | -      | -   | 50             |
| 9          | 24DSEU4H09                                          | HSSM   | Leveraging Technologies for Project | 2       | 1           | 2      | _ | _   | _     | _   | 50     | _   | 50             |
|            |                                                     |        | Management and Startup Ventures     |         |             |        |   |     |       |     |        |     |                |
| 10         | 24DSEU4D10                                          | AC     | Liberal Learning                    | -       | 2*          | -      | - | -   | -     | -   | 50*    | -   |                |
| 11         | 24DSEU4D11                                          | AC     | Finishing School Training - IV      | -       | 2*          | -      | - | -   | -     | -   | 50*    | -   |                |
|            | Total                                               |        | Total                               | 22      | 16          | 12     | 0 |     |       |     |        |     | 600            |

#### **HONORS**

|     |    | 110110110   |        |                                |                 |   |   |   |       |     |        |     |       |       |
|-----|----|-------------|--------|--------------------------------|-----------------|---|---|---|-------|-----|--------|-----|-------|-------|
| 5   | r. |             | Course |                                | Teaching Scheme |   |   | T | heory |     | Practi | cal | Total |       |
| N   | o. | Course Code | Type   | Course Name                    | Credits         | L | P | T | ISE   | MSE | ESE    | INT | OE/   | Marks |
| - 1 | 3  | 23DSEU4Z01  | Honors | Fundamentals of Cyber Security | 3               | 3 | - | - | 20    | 30  | 50     | -   | -     | 100   |
|     | 4  | 23DSEU4Z02  | Honors | Fundamentals of Cyber Security | 1               | - | 2 | - | -     | -   | -      | 25  | -     | 25    |

#### Note:

\$ - Open & Distance Learning

\* - Values are not included in total marks

Min. Marks for Passing: 40% of total marks of individual course



| Course Code:                                  | 24DSEU4P01 |  | L | Т | Р | Credit |
|-----------------------------------------------|------------|--|---|---|---|--------|
| Course Name: Discrete Mathematical Structures |            |  |   |   |   | 3      |

1. Mathematics - Probability theory, Set theory, functions

# **Course Description:**

This Course consists of concepts of Discrete mathematical structures such as mathematical logic, Sets, relations, functions, lattices and Boolean algebra, combinatorics and graph theory.

| Course | e Outcomes:                                                                                  | After the completion of the course the student will be able to -           |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Explain the basic concepts of discrete mathematical structures                               |                                                                            |  |  |  |  |  |
| CO2    | Demonstrate the applications of discrete structures in different fields of computer science. |                                                                            |  |  |  |  |  |
| CO3    | 3 Solve problems using the concepts of Discrete structures.                                  |                                                                            |  |  |  |  |  |
| CO4    | Apply the mat                                                                                | hematical proofs and techniques to prove the theorems in computer science. |  |  |  |  |  |

## **CO-PO Mapping:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   |     |     |     | 1   |     |     |     |     |      |      |      |      |      |
| CO2 | 2   |     |     | 1   | 2   | 1   |     |     |     |      |      | 1    | 1    |      |
| CO3 | 2   | 2   | 2   | 1   | 1   |     |     |     |     |      |      |      |      |      |
| CO4 | 2   | 1   | 1   | 1   | 1   | 1   |     |     |     |      |      |      |      |      |
| CO5 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

| SN | Assessment                      | Weightage | Remark                                              |
|----|---------------------------------|-----------|-----------------------------------------------------|
| 1  | In Semester Evaluation 1 (ISE1) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2  | Mid Semester Examination (MSE)  | 30%       | 50% of course contents                              |
| 3  | In Semester Evaluation 2 (ISE2) | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 4  | End Semester Examination (ESE)  | 50%       | 100% course contents                                |



## Unit 1 Mathematical logic

8 Hours

- 1.1 Statements and Notations
- 1.2 Connectives, Statement formulas and truth tables, well formed formulas, Tautologies, Equivalence of formulas, Duality law, Tautological implications, functionally complete sets of connectives, other connectives
- 1.3 Normal and principal normal forms, completely parenthesized infix and polish notations
- 1.4 Theory of Inference for statement calculus validity using truth table, rules of inference, consistency of Premises and indirect method of proof, Predicate calculus

#### Unit 2 Set theory

8 Hours

- 2.1 Basic concepts of set theory, Operations on sets, Ordered pairs, Cartesian Products
- 2.2 Representation of discrete structures
- 2.3 Relation and ordering properties of binary relations in a set, Relation matrix and the graph of a relation, Partition and Covering of set, Equivalence relations, Recurrence relations, Composition of Binary relations, Partial ordering, POSET and Hasse diagram.
- 2.4 Functions types, composition of functions, Inverse functions.

## Unit 3 Algebraic systems

**5 Hours** 

- 3.1 Algebraic systems, properties and examples
- 3.2 Semigroups and Monoids, properties and examples, Homomorphism of Semigroups and Monoids
- 3.3 Groups: Definition and examples, Subgroups and homomorphism

#### Unit 4

**5 Hours** 

- 4.1 Lattice as POSETs , definition , examples and properties
- 4.2 Lattice as algebraic systems, Special lattices
- 4.3 Boolean algebra definition and examples
- 4.4 Boolean functions

# Unit 5 Permutations, Combinations and Probability theory

7 Hours

- 5.1 The Basics of Counting
- 5.2 The Pigeonhole Principle
- 5.3 Permutations and Combinations
- 5.4 Generalized Permutations and Combinations
- 5.5 Discrete Probability
- 5.6 Conditional probability
- 5.7 Bayes' Theorem

# Unit 6 Graphs

7 Hours

- 6.1 Introduction to Graphs
- 6.2 Graph Terminology
- 6.3 Representing Graphs and Graph Isomorphism
- 6.4 Connectivity
- 6.5 Euler and Hamilton Paths
- 6.6 Planar Graphs
- 6.7 Introduction to Trees

#### **Text Books:**

- 1. Discrete Mathematical Structures with Application to Computer Science J. P. Tremblay & R. Manohar (MGH International)
- 2. Discrete Mathematics and its Applications Kenneth H. Rosen (AT SELLADS) (MATHE COM/rosen)

- 1. Discrete Mathematics SemyourLipschutz, MarcLipson (MGH), Schaum's outlines.
- 2. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", SiE Edition, TataMcGrawHill, 2008,ISBN 10:0-07-066913-9
- 3. Schaums Solved Problem Series Lipschutz.
- 4. Discrete Mathematical Structures Bernard Kolman, Robert Busby, S.C.Ross and NadeemurRehman (Pearson Education)



| Course Code: | 24DSEU4P02 |  | L | T | P | Credits |
|--------------|------------|--|---|---|---|---------|
| Course Name: | 3          |  |   | 3 |   |         |

- 1. Problem Solving Approch
- 2. Data Structures

## **Course Description:**

This course introduces basic methods for the design and analysis of efficient algorithms. Different algorithms for a given computational task are presented and their relative merits evaluated based on performance measures. It introduces the fundamental techniques for designing and analyzing algorithms, including asymptotic analysis, divide-and-conquer algorithms, greedy algorithms, dynamic programming, traversal methods and even backtracking approach. It also provides introduction to NP-completeness.

| Cours | e Outcomes:    | After the completion of the course the student will be able to -                            |  |  |  |  |  |  |  |
|-------|----------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1   | demonstrate a  | n understanding of algorithms, their properties, and design techniques.                     |  |  |  |  |  |  |  |
| CO2   | evaluate algo  | valuate algorithm performance using asymptotic notations.                                   |  |  |  |  |  |  |  |
| CO3   | select the mos | elect the most appropriate algorithmic strategy for solving complex computational problems. |  |  |  |  |  |  |  |
| CO4   | classify probl | ems into polynomial, NP-Hard, and NP-Complete categories.                                   |  |  |  |  |  |  |  |

CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     |     |     | 1   |     |     | 1   |     |      |      |      | 1    |      |
| CO2 | 2   | 1   |     | 1   |     |     |     | 1   |     | 1    | 1    |      |      |      |
| CO3 |     | 2   | 2   | 1   | 1   |     |     |     |     | 1    |      | 2    | 1    | 1    |
| CO4 | 1   | 1   |     | 1   |     |     |     |     |     | 1    | 1    | 2    |      |      |

| Assess | sment Scheme:           |               |           |                                                     |
|--------|-------------------------|---------------|-----------|-----------------------------------------------------|
| SN     | Assessment              |               | Weightage | Remark                                              |
| 1      | In Semester Evaluati    | ion 1 (ISE1)  | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2      | Mid Semester Exam (MSE) | ination       | 30%       | 50% of course contents                              |
| 3      | In Semester Evaluati    | ion 2 (ISE2)  | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 4      | End Semester Exam       | ination (ESE) | 50%       | 100% course contents                                |



## **Unit 1 Introduction to Algorithms**

7 Hours

Definition, Properties of Algorithms, Expressing Algorithm- Pseudocode; Flowchart, Algorithm Design Techniques, Performance Analysis of Algorithms, Types of Algorithm's Analysis, Order of Growth, Asymptotic Notations, Recursion

## **Unit 2 Divide and Conquer**

7 Hours

The general method, Binary search, Finding the maximum and minimum, Merge sort, Quick sort, Analysis of Divide and Conquer algorithms.

## **Unit 3 Greedy Algorithms**

7 Hours

Introduction to Greedy Technique, General Greedy Method, Knapsack Problem, Job Sequencing with Deadline, Optimal Merge Patterns, Minimum Spanning Tree - Prim's Algorithm, Kruskal's algorithm, Single-Source Shortest Path Algorithm

## Unit 4 Dynamic Programming

7 Hours

The general method, Longest Common Sub-sequence, Bellman Ford, All pair shortest paths, 0/1 knapsack, Traveling Salesperson problem.

#### Unit 5 Backtracking

7 Hours

Backtracking Concept, N–Queens Problem, Sum of Subsets Problem, Graph Coloring Problem, Hamiltonian Cycle

#### **Unit 6 NP Hard and NP Complete Problems**

6 Hours

Introduction, Polynomial Complexity Class, Non Polynomial Complexity Class- NP-Hard, NP-Complete

#### Text Books:

1. Ellis Horowitz, Satraj Sahani, Saguthevar Rajasejaran, Fundamentals of Computer Algorithms Universities Press, Second Edition (All Units)

- 1. Gilles Brassard, Paul Bratley, Fundamentals of Algorithmics, Pearson Education
- 2. Kyle Loudon, Mastering Algorithms with C, SPD O'Reilly
- 3. Allen Van Gelder, Sara Baase, Computer Algorithms- Introduction to Design and Analysis, Pearson Education



| Course Code: | 24DSEU4P03           | L | T |  |
|--------------|----------------------|---|---|--|
| Course Name: | Programming Lab - II | 2 | 0 |  |

1. Procedural Programming Language

## **Course Description:**

This course introduces students to the principles of object-oriented programming using Java. Students will develop practical skills through hands-on coding exercises and projects, learning to design and implement efficient, reusable, and maintainable code using OOP concepts.

Credit 3

| Course | <b>Dutcomes:</b> After the completion of the course the student will be able to -           |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1    | Inderstand the fundamentals of Object-Oriented Programming (OOP) and Java language          |  |  |  |  |  |  |
|        | constructs.                                                                                 |  |  |  |  |  |  |
| CO2    | Apply various object-oriented features to solve real-life problems using Java Programming   |  |  |  |  |  |  |
|        | anguage.                                                                                    |  |  |  |  |  |  |
| CO3    | Make use of file I/O operations and exceptions in Java to create robust and error-resilient |  |  |  |  |  |  |
|        | orograms.                                                                                   |  |  |  |  |  |  |
| CO4    | Itilize appropriate collection classes to solve real-world programming problems.            |  |  |  |  |  |  |

CO-PO Mapping:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     |     |     |     |     |     |     | 1   | 1    |      | 3    | 1    |      |
| CO2 | 1   | 1   | 2   |     | 3   |     |     | 2   | 1   | 2    |      |      | 3    | 2    |
| CO3 | 1   | 1   | 2   |     | 3   |     |     | 2   | 1   | 1    |      | 3    | 3    | 2    |
| CO4 |     |     |     |     | 3   |     |     |     | 1   |      |      |      | 2    |      |

| Assessi | ment Scheme:           |     |                                                     |  |  |  |
|---------|------------------------|-----|-----------------------------------------------------|--|--|--|
| SN      | Assessment   Weightage |     | Remark                                              |  |  |  |
| 1       | Internal Assessment    | 50% | Assignment, Test, Quiz, Seminar, Presentation, etc. |  |  |  |
| 2       | POE                    | 50% | Practical/Oral Examination                          |  |  |  |



## Unit 1 Introduction to OOPs concepts and Java Programming

3 Hours

Introduction to procedural & object-oriented programming, Limitations of procedural programming, Need of object-oriented programming,

**Fundamentals of object-oriented programming:** objects, classes, data members, methods, messages, data encapsulation, data abstraction and information hiding, inheritance, polymorphism.

**Introduction to Java Programming:** The Java Buzzwords, The Java Programming Environment- JVM, JIT Compiler, Byte Code Concept, A Simple Java Program, Source File Declaration Rules, Comments, Data Types, Variables, Operators, Strings, Input and Output, Control Flow, Big Numbers, ArraysJagged Array.

#### Unit 2 Classes and Objects

5 Hours

Object-Oriented Programming Concepts, Declaring Classes, Declaring Member Variables, Defining Methods, Constructor, Passing Information to a Method or a Constructor, Creating and using objects, Controlling Access to Class Members(Access specifiers – public, private, protected,), Static Fields and Methods, this keyword, Object Cloning, use of the new keyword, Method overloading, array of objects, passing objects to functions, returning object.

#### **Unit 4** Inheritance, Interface and Packaging

6 Hours

**Inheritance:** Definition, Superclasses, and Subclasses, Overriding and Hiding Methods, Polymorphism, Inheritance Hierarchies, Super keyword, Final Classes and Methods, Abstract Classes and Methods, casting, Design Hints for Inheritance, Nested classes & Inner Classes.

**Interfaces:** Defining an Interface, Implementing an Interface, Using an Interface as a Type, Evolving Interfaces, Default Methods.

**Packages:** Class importing, Creating a Package, Naming a Package, Using Package Members, Managing Source and Class Files

## Unit 5 Exception Handling and File I/O

6 Hours

I/O Streams: Byte Stream – InputStream, OutputStream, DataInputStream, DataOutputStream, FileInputStream, FileOutputStream, Character Streams, BufferedStream, Scanner, File, RandomAccesFile. Exception: Definition, Dealing with Errors, The Classification of Exceptions, Declaring Checked Exceptions, Throw an Exception, Creating Exception Classes, Catching Exceptions, Catching Multiple Exceptions, Re-throwing and Chaining Exceptions, finally clause, Advantages of Exceptions, Tips for Using Exceptions.

## **Unit 5 | Multithreading and Collections**

6 Hours

**Multithreading:** Processes and Threads, Runnable Interface and Thread Class, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Thread States, Thread Properties, Joins, Synchronization

**Collections:** Collection Interfaces, Concrete Collections- List, Queue, Set, Map, the Collections Framework.

#### Text Books:

- 1. "Core Java Volume I Fundamentals" by Cay S. Horstmann and Gary Cornell
- 2. "Java: The Complete Reference" by Herbert Schildt

#### **Reference Books:**

1. "Head First Java" by Kathy Sierra and Bert Bates



## **List of Experiments:**

- 1. Write a Java program to implement data types, operators
- 2. Write a Java program to implement simple class and objects
- 3. Write a Java program to implement Contructor overloading
- 4. Write a Java program to implement Method overloading
- 5. Write a Java program to implement different types of inheritance
- 6. Write a Java program to implement abstract class
- 7. Write a Java program to implement interface
- 8. Write a Java program to implement package
- 9. Write a Java program to implement File Handling
- 10. Write a Java program to implement Exception Handling
- 11. Write a Java program to implement Multithreading
- 12. Write a Java program to implement different collection



| Course Code: | 24DSEU4M04           |             | L |
|--------------|----------------------|-------------|---|
| Course Name: | Data Analysis and Vi | sualization | 2 |

| L | Т | Р | Credit |
|---|---|---|--------|
| 2 |   |   | 2      |

1. Fundamentals of Data Science

## **Course Description:**

This course introduces students to data analysis and visualization in the field of exploratory data science.

| Course | Outcomes:    | After the completion of the course the student will be able to -                             |  |  |  |  |  |  |
|--------|--------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1    | Demonstrate  | proficiency in Python libraries for exploratory data analysis.                               |  |  |  |  |  |  |
| CO2    | Implement co | mplement comprehensive data preprocessing workflows                                          |  |  |  |  |  |  |
| соз    | Apply data m | anipulation techniques and create effective visualizations to solve real-world data analysis |  |  |  |  |  |  |

## CO-PO Mapping:

| $\overline{}$ |     |     |     |     |     |     |     | ·   |     |     |      |      |      |      |      |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|               |     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|               | CO1 | 2   | 3   | 2   | 3   | 3   | 1   |     |     |     |      |      |      | 3    | 3    |
|               | CO2 | 2   | 3   | 2   | 3   | 2   | 1   |     |     |     |      |      |      | 3    | 3    |
|               | CO3 | 2   | 3   | 3   | 3   | 1   | 1   |     |     |     |      |      |      | 3    | 3    |

| SN | Assessment                                | Weightage | Remark               |
|----|-------------------------------------------|-----------|----------------------|
| 1  | End Semester Examination (ESE) [50 marks] | 100%      | 100% course contents |



Unit 1 Introduction 6 Hours

Introduction to Data Science, Exploratory Data Analysis and Data Science Process. Motivation for using Python for Data Analysis, Introduction of Python shell iPython and Jupyter Notebook.

Essential Python Libraries: NumPy, pandas, matplotlib, SciPy, scikit-learn, statsmodels.

#### **Unit 2 | Getting Started with Pandas**

8 Hours

Arrays and vectorized conputation, Introduction to pandas Data Structures, Essential Functionality, Summarizing and Computing Descriptive Statistics.

Data Loading, Storage and File Formats.

Reading and Writing Data in Text Format, Web Scraping, Binary Data Formats, Interacting with Web APIs, Interacting with Databases

Data Cleaning and Preparation.

Handling Missing Data, Data Transformation, String Manipulation

#### Unit 3 Data Wrangling and Data Visualization

8 Hours

Data Wrangling: Hierarchical Indexing, Combining and Merging Data Sets Reshaping and Pivoting.

Data Visualization matplotlib: Basics of matplotlib, plotting with pandas and seaborn, other python visualization tools.

#### Unit 4 Data Aggregation and Group operations

6 Hours

Group by Mechanics, Data aggregation, General split-apply-combine, Pivot tables and cross tabulation, Categorical Data, Advanced GroupBy Use, Techniques for Method Chaining.

#### **Text Books:**

1.McKinney, W.(2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy and IPython. 2nd edition. O'Reilly Media

#### **Reference Books:**

1. O'Neil, C., & Schutt, R. (2013). Doing Data Science: Straight Talk from the Frontline O'Reilly Media



| Course Code: | 24DSEU4O05             |            |
|--------------|------------------------|------------|
| Course Name: | Introduction to Data E | ngineering |

| L | Т | P | Credit |
|---|---|---|--------|
| 2 |   |   | 2      |

Fundamental of Data Science

## **Course Description:**

This course is about the understanding of fundamental techniques involved in the data engineering and will provide understanding of data engineering life cycle. Also, includes topics which focus on source systems of data engineering, storage, ingestion, Security, data Management, Data modelling and Design. They are used in a variety of applications today including Business Intelligence and Analytics, smart cities, healthcare, fraud detection

| Course | e Outcomes: After the completion of the course the student will be able to -       |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Describe the basic principles, foundation and building blocks of Data Engineering. |  |  |  |  |  |
| CO2    | Define the data engineering lifecycle and ETL model.                               |  |  |  |  |  |
| CO3    | Explain the need of basic architecture in data engineering.                        |  |  |  |  |  |
| CO4    | Summarize the technologies used for implementation of data engineering lifecycle   |  |  |  |  |  |

## **CO-PO Mapping:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 1   | 1   | 1   | 1   |     |     |     |     |      |      |      | 2    | 1    |
| CO2 | 1   | 2   | 1   | 1   | 1   |     |     |     |     |      |      |      | 2    | 2    |
| CO3 | 1   | 2   | 2   | 2   | 2   | 1   |     |     |     |      |      |      | 3    | 3    |
| CO4 | 1   | 1   | 2   | 3   | 2   | 1   |     |     |     |      |      |      | 3    | 2    |

| SN | Assessment                     | Weightage | Remark               |
|----|--------------------------------|-----------|----------------------|
| 1  | End Semester Examination (ESE) | 100%      | 100% course contents |
|    | [50 marks]                     |           |                      |



## Unit 1 Foundation and Building Blocks of Data Engineering

6 Hours

What is Data Engineering - Data Engineering Defined, Data Engineering Lifecycle, Evolution of the Data Engineer, Data Engineering and Data Science. Data Engineering Skills and Activities - Data Maturity and the Data Engineer, The Background and Skills of a Data Engineer, Business Responsibilities, Technical Responsibilities. Data Engineers Inside an Organization - Internal-Facing Versus External-Facing Data Engineers, Data Engineers and Other Technical Roles, Data Engineers and Business Leadership.

## **Unit 2 | The Data Engineering Life Cycle**

6 Hours

What is data engineering life cycle - The data lifecycle vs the data engineering lifecycle, source systems, storage, ingestion, Batch vs streaming, push vs pull, Transformation, serving Data, Analytics, Machine Learning, Reverse ETL.Major undercurrents across the Data Engineering Lifecycle - Security, data Management, Data modelling and Design, Data Lineage, Data Integration and interoperability, Data Lifecycle management, DataOps

## Unit 3 Designing good data architecture

**6 Hours** 

What is data architecture, enterprise architecture, Good data architecture, principles of good data architecture, Major architecture concepts, tight vs loose coupling, examples and types of Data architecture

## Unit 4 Choosing technologies across Data Engineering Lifecycle

6 Hours

Team size and capabilities, Speed to market, Interoperability, Cost optimization and business value, Today versus the future: immutable versus transitory technologies, Location (cloud, on premises, hybrid cloud, multi cloud), Build versus buy, Monolith versus modular, Serverless versus servers, Optimization, performance and the benchmark wars, The undercurrents of the data engineering lifecycle

#### Text Books:

1. Fundamentals of Data Engineering, Joe Reis & Matt Housley, O'REILLY

#### **Reference Books:**

1. Designing Data-Intensive Applications, Martin Kleppmann, O'REILLY

#### **Useful Links:**

1.https://elearn.nptel.ac.in/shop/iit-workshops/completed/introduction-to-data-engineering-usingazure/?v=c86ee0d 9d7ed



| Course Code: | 24DSEU4A06 |  | L | T | P | Credit |
|--------------|------------|--|---|---|---|--------|
| Course Name: | Soft Skill |  |   |   | 4 | 2      |

| Course | Prerequsites: |
|--------|---------------|
|        |               |

Basic English Knowledge

## **Course Description:**

1. Soft skills are character traits and interpersonal skills that characterize a person's relationships with other people. This course includes Communication skills, Writing skills, Techniques for self- development, Teamwork and group discussions, Time and stress management, Professional skills for overalldevelopment of an Engineer.

| Course | Outcomes:                                                             | After the completion of the course the student will be able to - |  |  |  |  |  |
|--------|-----------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Effectively use the principles of communication.                      |                                                                  |  |  |  |  |  |
| CO2    | Make appropriate use of interviews techniques.                        |                                                                  |  |  |  |  |  |
| CO3    | Develop skills to conduct meetings & conferences.                     |                                                                  |  |  |  |  |  |
| CO4    | Make effective presentations & technical report writing.              |                                                                  |  |  |  |  |  |
| CO5    | Actively participate in group discussion by following its etiquettes. |                                                                  |  |  |  |  |  |
| CO6    | Effectively m                                                         | anage time and stress.                                           |  |  |  |  |  |

CO-PO Mapping:

|    | PO: | . PO | 2   F | РОЗ | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO2 |
|----|-----|------|-------|-----|-----|-----|-----|-----|-----|-----|------|----------|----------|----------|------|
| CO | 1   |      |       |     |     |     | 1   |     |     | 3   | 3    |          | 3        |          |      |
| CO | 2   |      |       |     |     |     |     |     |     | 1   | 1    |          | 3        |          |      |
| CO | 3   |      |       |     |     |     | 1   |     |     | 3   | 1    |          | 3        | 2        |      |
| CO | 4 1 |      |       |     |     | 2   | 1   |     |     | 3   | 2    |          | 3        | 3        |      |
| CO | 5   |      |       |     |     |     | 1   |     |     | 2   | 2    |          | 3        |          |      |
| CO | ŝ   |      |       |     |     |     | 1   |     |     | 3   | 1    |          | 3        | 2        |      |

# | Assessment Scheme: | SN | Assessment | Weightage | Remark | | 1 | INT [25 Marks] | 50.00% | Assignment, Test, Quiz, Seminar, Presentation, etc. | | 2 | End Semester Examination (ESE) | [25 Marks] | 50.00% | Oral Examination |



#### **Unit 1 Communication Skills**

Process of communication, Flows of Communication in organization, Barriers to communication (Formal Flow – Upward, Downward, lateral and diagonal, Strategies to improve Organizational Communication, Effectiveness in Managerial Communication, and importance of technical communication, Nonverbal communication.

#### **Unit 2 Interviews Skills**

Types of interview, General preparation for interview, gathering information about the company, knowing about the role/job position, Types of interviewing questions, Non-verbal communication to win the interview

## **Unit 3 | Meeting & Conferences**

Planning a meeting (Agenda and notice), Conducting a meeting, Post meeting actions (Minutes), Planning & Conducting a Conference (anchoring and Report writing), and Video/web conferences, Identifying Strengths and Weakness.

## **Unit 4 Presentation Skills**

Effective Presentation strategies: Purpose, analyzing the audience and locale, organizing the content Oral presentation, Graphic presentation, Presentation aids, Personality Development. Newsletters, technical article and business letters. Technical Reports, characteristics, Importance, objectives, categories of report, format structure of reports, types of reports

#### **Unit 5 Group Discussion**

Qualities needed for effective group discussion. Email etiquettes, Telephone Etiquettes, Role and responsibility of engineer, Work culture in jobs. Work place, rights and responsibilities.

#### **Unit 6 Time and Stress Management**

Concept & Importance of Time Management, Techniques of Time Management, and Concept & Importance of Stress Management, Techniques of Stress Management, and Overcoming Stage fear and Interpersonal Relationships

#### **Text Books:**

- 1. G.S.B.K Babu Rao, "Business Communication and Soft Skill", Himalaya Publishing house (1st Edition)
- 2. Diane Hacker, "Pocket Style Manual", Bedford Publication, New York, 2003. (ISBN 0312406843)
- 3. Shiv Khera, "You Can Win", Macmillan Books, New York, 2003.

- 1. Raman Sharma, "Technical Communications", Oxford Publication, London, 2004.
- 2. "Ethics in Engineering practice and research" (2nd Edition) by Caroline Whit beck Cambridge
- 3. Sharma, R. and Mohan, K. "Business Correspondence and Report Writing", TMH New Delhi 2002.



| Course Code: | 24DSEU4N07                      |  | L | Т |
|--------------|---------------------------------|--|---|---|
| Course Name: | Web Application Development – I |  | 1 |   |

| Course Prerequsites:           |  |  |  |
|--------------------------------|--|--|--|
| 1. Basic Knowledge of Computer |  |  |  |

Credit

2

2

## **Course Description:**

This course is about the understanding and application development using the front end technologies. This aims to equip the students with different front end technologies needed to design and develop the applications of different problems related to UI interface

| Course Outcomes: |                                                                                     | After the completion of the course the student will be able to -                    |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1              | Develop structured and styled web pages using HTML and CSS                          |                                                                                     |  |  |  |  |  |
| CO2              | Design respo                                                                        | Design responsive and user-friendly websites using Responsive Web Design principles |  |  |  |  |  |
| CO3              | 3 Implement dynamic and interactive web functionalities using JavaScript and jQuery |                                                                                     |  |  |  |  |  |

# **CO-PO Mapping:**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   | 1   | 1   |     | 2   | 1   |     | 1   |     |      |      | 1    | 2    |      |
| CO2 | 1   | 1   | 1   |     | 2   | 1   |     | 1   |     |      |      | 1    | 2    |      |
| CO3 | 1   | 1   | 2   |     | 2   | 1   |     | 1   |     |      |      | 1    | 2    |      |

| SN | Assessment             | Weightage | Remark                                              |
|----|------------------------|-----------|-----------------------------------------------------|
| 1  | In Semester Evaluation | 50%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2  | POE                    | 50%       | 100% course contents                                |



#### Unit 1 HTML & CSS 3 Hours

HTML: HTML Structure, Block Elements, Inline Elements, Class and ID Attributes, HTML Whitespaces. CSS SELECTOR: Type, Class and ID Selector, Position and Group Selectors, Attribute Selectors, Pseudo-element Selectors, Pseudoclass Selectors.

Box Model: Display, Box Model, Inline Box, Inline-Block Box.

## **Unit 2** | **Responsive Web Designing**

3 Hours

Responsive Web Designing: Introduction, Viewport, Grid View, Image, Video, Media Queries, RWD frameworks. Twitter Bootstrap: Grid Basics, Typography, Tables, Images, Alerts, Button, Button Group, Borders, Labels, Progress bar, Pagination, Tabs, Navbar, Forms, Inputs, Input sizing, Carousel, Scrollspy.

Unit 3 JavaScript 4 Hours

Introduction, Data types and Variables, Operators, Expressions and Statements, Functions and Scope, Document Object Model, Event Handling, Form handling and validations.

Unit 4 | jQuery 3 Hours

Introducing jQuery, jQuery selector, Animation effects, Event handling, DOM, jQuery DOM traversing, DOM manipulation.

#### Text Books:

- 1. Pro HTML5 and CSS3 Design Patterns by Michael Bowers, Dionysios Synodinos and Victor Sumner, Apress edition
- 2. Twitter Bootstrap Development How to by David Cochran, Packt Publication
- 3. JavaScript: The Definitive Guide by David Flanagan, O'Reilly Media
- 4. jQuery in Action by Bear Bibeault, Manning Publication

- 1. Beginning with HTML5 and CSS3 The Web Evolved by Murphy, Apress
- 2. JavaScript: The Complete Reference by Thomas A Powell, Fritz Schneider, Tata McGraw Hill
- 3. Head First jQuery by Ryan Benedetti, O'reilly Publication



## **Experiment List:**

- 1. Create Web Page structure using HTML5.
- 2. Create Web Pages with Class and ID attributes using HTML5.
- 3. Apply CSS to web pages created after developing the HTML5 pages.
- 4. Apply different CSS selectors to HTML5 web pages.
- 5. Create a responsive web page using media queries.
- 6. Create a responsive web page using bootstrap.
- 7. Write a JavaScript to compute mathematical operations on client side.
- 8. Write a JavaScript to handle event generated by client.
- 9. Write a JavaScript to perform form validation.
- 10. Write a jQuery script to provide animations effects in web pages.
- 11. Write a jQuery script to handle event generated by client.
- 12. Write a jQuery script to manipulate DOM



| Course Code: | 23DSEU4V08          | _       | I |
|--------------|---------------------|---------|---|
| Course Name: | Environmental Studi | es - II | 2 |

| L | Т | P | Credit |
|---|---|---|--------|
| 2 |   |   | 2      |

1. Understanding of Environmental Education course

## **Course Description:**

The main objective of course is to create awareness among students regarding environmental issues and its impact on society. Knowledge regarding environmental components, its degradation and protection of environment is need for sustainable future ahead.

| Course | Outcomes:                                                                                                                                 | After the completion of the course the student will be able to -                          |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| CO1    | Understand the fundamentals of environmental chemistry and assess the impacts of toxic pollutan ecosystems and human health.              |                                                                                           |  |  |  |
| CO2    | Identify and evaluate green technologies and sustainable innovations for solving environmental problems.                                  |                                                                                           |  |  |  |
| CO3    | Analyze global environmental challenges and climate change mitigation strategies, including national and international policy frameworks. |                                                                                           |  |  |  |
| CO4    | Acquire probreport.                                                                                                                       | lem solving attitude through actual field experience and report it in the form of a field |  |  |  |

# CO-PO Mapping:

|     | PO1 | PO2 | РО3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 1   |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| CO2 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| CO3 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |
| CO4 |     |     |     |     |     |     | 2   |     |     |      |      |      |      |      |

| SN | Assessment                     | Weightage | Remark                                              |
|----|--------------------------------|-----------|-----------------------------------------------------|
| 1  | In Semester Evaluation (ISE)   | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
|    | Mid Semester Exam              | 30%       | 50%ofcourse contents                                |
|    | In Semester Evaluation (ISE)   | 10%       | Assignment, Test, Quiz, Seminar, Presentation, etc. |
| 2  | End Semester Examination (ESE) | 50%       | 100%course contents                                 |



## Unit 1 | Environmental Chemistry & Toxicology

**5 Hours** 

Basics of environmental chemistry (air, water, soil interactions), Chemical composition of the atmosphere, photochemical smog, Water chemistry: pH, DO, alkalinity, hardness, Soil chemistry: nutrients, contamination, pH

,Toxic pollutants: Pesticides, Heavy Metals (Hg, Pb, Cd, As), POPs, Industrial pollution sources and pathways, Health impacts of toxic substances on humans and ecosystems, Environmental standards by WHO, CPCB, BIS

# Unit 2 Green Technologies & Innovations

8 Hours

Introduction to Green Technologies: definitions, scope, principles, Green Buildings: features, LEED/IGBC ratings, case studies in India, Sustainable construction materials: fly ash bricks, bamboo, recycled concrete, Electric mobility: EVs, battery technologies, government policies (FAME), Renewable Energy Innovations: Solar PV, Wind, Bioenergy, LED systems, Smart energy solutions: energy metering, demand-side management, Energy-efficient appliances: BEE labeling, star ratings

## Unit 3 Global Environmental Issues & Climate Action

8 Hours

Climate change science: greenhouse gases, Major impacts of climate change: sea level rise, extreme events, biodiversity loss, International environmental treaties and protocols: Kyoto Protocol, Montreal Protocol, Paris Agreement: India's INDC goals, India's National Action Plan on Climate Change (NAPCC), Carbon footprint: measurement, tools, reduction strategies, Net-zero emissions: pathways and technologies, Role of youth and civil society in climate action.ISO 14001:2015 – standards, implementation process, audits, Effluent Treatment Plant (ETP) and Sewage Treatment Plant (STP) processes, Corporate Social Responsibility (CSR): legal framework, case studies.

# Unit 4 Field Project Work

5 Hours

Case studies based on field visit (Each student must complete a project on an environmental issue and propose solutions)

#### **Text Books:**

1 Benny Joseph – Environmental Science and Engineering Publisher: McGraw Hill Education, ISBN: 9789339221266.

- 2. Anubha Kaushik & C.P. Kaushik Environmental Management, Publisher: New Age International Publishers, ISBN: 9788122419477.
- 3. S.M. Khopkar Environmental Pollution Monitoring and Contro. Publisher: New Age International Publishers, ISBN: 9788122404282



#### **Reference Books:**

4. Rajagopalan – Environmental Studies: From Crisis to Cure

Publisher: Oxford University Press

ISBN: 9780198067691

5. S.K. Dhameja – Environmental Studies

Publisher: S.K. Kataria & Sons

ISBN: 9789350141014

6. A.K. De – Environmental Chemistry

Publisher: New Age International Publishers

ISBN: 9788122419460

7. ISO 14001:2015 – Environmental Management Systems :Requirements with Guidance for Use Publisher: International Organization for Standardization (ISO), ISBN: 9789267102970.

8. David T. Allen & David R. Shonnard: Green Engineering: Environmentally Conscious Design of Chemical Processes, Publisher: Pearson Education, ISBN: 9789332550479.

9. N. Basak – Environmental Engineering

Publisher: McGraw Hill Education

ISBN: 9789339205181

10. MoEFCC & NAPCC Policy Documents : Government of India, Available at: https://moef.gov.in



| Course Code: | 24DSEU4H09                                                      | L   | Т | Р | Credit |
|--------------|-----------------------------------------------------------------|-----|---|---|--------|
| Course Name: | Leveraging Technology in project Management and Start-uventures | p 1 |   | 2 | 2      |

Software Engineering, project Management Basic Concepts

## **Course Description:**

This course explores the integration of technology with project management principles, emphasizing how computer engineering students can leverage advanced tools and strategies in managing projects and launching start-up ventures. The course covers project management methodologies, software tools, and real-world applications .

| Course Outcomes: |                                                                                | After the completion of the course the student will be able to - |  |  |  |
|------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| CO1              | O1 Apply technology to optimize project planning, execution, and monitoring.   |                                                                  |  |  |  |
| CO2              | Dmonstrate practical skills in using project management tools and technologies |                                                                  |  |  |  |
| CO3              | Learn the use of technology in start-up ventures and entrepreneurial projects  |                                                                  |  |  |  |

## **CO-PO Mapping:**

|    |           | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|----|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CC | 01        |     |     | 1   |     | 1   |     |     |     |     |      | 2    |      |      |      |
| CC | <b>D2</b> |     |     | 1   |     | 3   |     | 3   |     | 2   | 2    | 2    | 2    | 3    |      |
| CC | Э3        |     |     | 1   |     | 3   |     | 3   |     | 2   | 3    | 2    | 2    | 3    |      |

| İ | SN | Assessment                      | Weightage | Remark                                              |  |  |  |
|---|----|---------------------------------|-----------|-----------------------------------------------------|--|--|--|
|   | 1  | In Semester Evaluation [50 Mark | 100%      | Assignment, Test, Quiz, Seminar, Presentation, etc. |  |  |  |



Unit 1 Introduction 3 Hours

Project Management (PM) Fundamentals, People, Process, and Product, Technology Classic mistakes, PMI Processes, Software project phases, Organizational structures, Project charter, Statement of Work (SOW)

#### **Unit 2 Project Management Methodologies**

3 Hours

Development lifecycle models, Project plans Work Breakdown Structures (WBS), Agile and Scrum: Principles and Practices, Comparing Methodologies: When to Use Which.

#### Unit 3 Project Planning and Scheduling Tools

3 Hours

Introduction to Project Planning Software (e.g., MS Project, Jira, Asana), Creating Project Plans and Gantt Charts, Resource Allocation and Budgeting.

#### Unit 4 Vision and the Business Model & Innovation Strategies

4 Hours

The Vision, The Mission Statement, The Value Proposition, The Business Model, Business Model Innovation in Challenging Markets, Core Competencies, Sustainable Competitive Advantage. First Movers Versus Followers, Imitation, Creativity and Invention, Types and Sources of Innovation, Technology and Innovation Strategy, New Technology Ventures.

#### **Text Books:**

- 1. "Information Technology Project Management", Kathy Schwalbe, Cengage Learning, 7/e, 2013.
- 2. "Technology Ventures From Idea to Enterprise", Thomas H. Byers, Richard C. Dorf, Andrew J., Nelson

- 1. "Software Project Management", M. Cottrell and B. Hughes, McGraw-Hill, 5/e, 2009.
- 2. "Project Management Software Tools: A Guide to Choosing the Right Tools" by Michael S. Dobson
- 3. "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses" by Eric Ries

