D. Y. PATIL DEEMED TO BE UNIVERSITY SCHOOL OF ENGINEERING AND MANAGEMENT

Teaching and Evaluation Scheme from Year 2023-24 (as per NEP-2020)

B. Tech. Computer Science Engineering (SEMESTER-V)

C		C	B. Feen. Comparer Science		eaching			Т	heory		Practi	cal	T-4-1
Sr. No.	Course Code	Course Type	Course Name	Cuadita	Co	ontact H	Irs	ICE	MSE	ECE	INT	OE/	Total Marks
110.		Туре		Credits	L	P	Т	ISE	MSE	ESE	11/11	PoE	Maiks
1	23CSEU5P01	PCC	Database Engineering	3	3	-	-	20	30	50	-	-	100
2	23CSEU5P02	PCC	Database Engineering Lab	1	-	2	-	-	-	-	25	25	50
3	23CSEU5P03	PCC	Information Security	3	3	-	-	20	30	50	-	-	100
4	23CSEU5P04	PCC	Smart Phone Application Development	3	2	2	-	-	-	-	25	25	50
5	23CSEU5P05	PCC	Software Engineering	2	2	-	-	20	30	50	-	-	100
6	23CSEU5M06	MDM-III	Test Driven Development	3	3	-	-	20	30	50	-	-	100
7	23CSEU5M07	MDM-III	Test Driven Development Lab	1	-	2	-	-	-	-	25	-	25
8	23CSEU5E08		Internet of Things										
9	23CSEU5E09	PEC-I	Computer Graphics and Multimedia Techniques	3	3	-	-	20	30	50	-	-	100
10	23CSEU5E10		Principles of AI/ML										
11	23CSEU5E11		Internet of Things Lab										
12	23CSEU5E12	PEC-I	Computer Graphics and Multimedia Techniques Lab	1	-	2	-	-	-	-	25	-	25
13	23CSEU5E13		Principles of AI/ML Lab										
14	23CSEU5O14	OEC-III	Cloud Computing	2	2	-	-	-	-	50	-	-	50
15	23CSEU5D15	AC	Liberal Learning	-	2*	-	-	-	-	-	50*	-	
16	23CSEU5D16	AC	Finishing School Training - V	-	2*	-	-	-	-	-	50*	-	
			Total	22	18	8	0						700

HONORS

Sr.	Sr. Course			Teaching Scheme					heory		Practi	Total	
No.	Course Code	Type	Course Name	Credits	L	P	T	ISE	MSE	ESE	INT	OE/ PoE	Marks
1	23CSEU5Z01	Honors	Introduction to AI/ML	3	3	-	-	20	30	50	1	-	100
2	23CSEU5Z02	Honors	Introduction to AI/ML Lab	1	•	2	-	-	-	-	25	-	25
3	23CSEU5Z03	Honors	Data Security Systems	3	3	-	-	20	30	50	-	-	100
4	23CSEU5Z04	Honors	Data Security Systems Lab	1	-	2	-	-	-	-	25	-	25

Note:

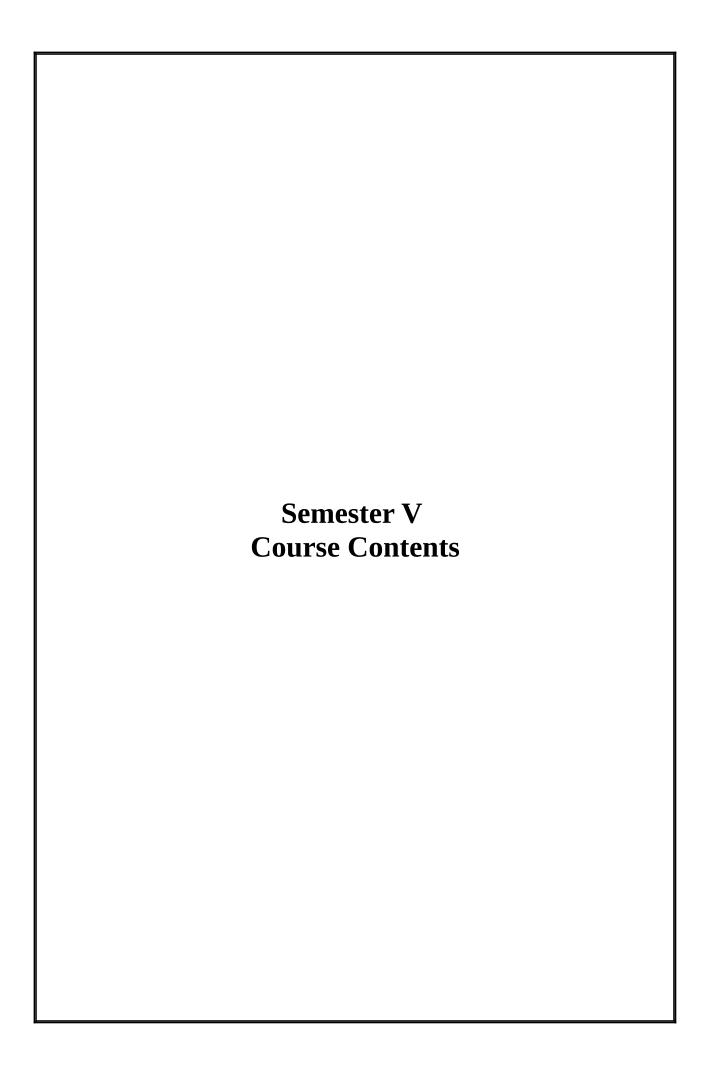
- \$ Open & Distance Learning
 * Values are not included in total marks

Min. Marks for Passing: 40% of total marks of individual course

D. Y. PATIL DEEMED TO BE UNIVERSITY SCHOOL OF ENGINEERING AND MANAGEMENT

Teaching and Evaluation Scheme from Year 2023-24 (as per NEP-2020)
B. Tech. Computer Science Engineering (SEMESTER-VI)

C		G		To	aching	Scheme	:	7	heory		Practi	cal	T-4-1
Sr. No.	Course Code	Course	Course Name	Cuadita	C	ontact H	Irs	ISE	MCE	ECE	INT	OE/	Total Marks
110.		Type		Credits	L	P	Т	ISE	MSE	ESE	INI	PoE	Marks
1	23CSEU6P01	PCC	System Programming	3	3	-	-	20	30	50	-	-	100
2	23CSEU6P02	PCC	Cloud Computing	3	3	-	-	20	30	50	-	-	100
3	23CSEU6P03	PCC	Cloud Computing Lab	1	-	2	-	-	-	-	25	25	50
4	23CSEU6P04	PCC	Web Technology-II	3	2	2	-	-	-	-	50	50	100
6	23CSEU6M05	MDM-IV	Web Testing	2	2	-	-	-	-	-	50	-	50
7	23CSEU6E06		Programming Paradigms										
8	23CSEU6E07	PEC-II	Ethical Hacking	3	3	-	-	20	30	50	-	-	100
9	23CSEU6E08	1	Image Processing										
10	23CSEU6E09		Programming Paradigms Lab	1 -									
11	23CSEU6E10	PEC-II	Ethical Hacking Lab		-	2	-	-	-	-	25	-	25
12	23CSEU6E11		Image Processing Lab										
13	23CSEU6E12		FOSS Tools										
14	23CSEU6E13	PEC-III	Blockchain Technology	3	3	-	-	20	30	50	-	-	100
15	23CSEU6E14		Augmented Reality/ Virtual Reality										
16	23CSEU6E15		FOSS Tools Lab										
17	23CSEU6E16	PEC-III	Blockchain Technology Lab	1	_	2	_	_	_	_	25	_	25
18	23CSEU6E17	T EC-III	Augmented Reality/ Virtual Reality Lab		-	2	_	-	_	-	23	-	23
19	23CSEU6N18	VSEC	Project Management Tools	2	1	2	-	-	-	-	25	25	50
20	23CSEU6D19	AC	Liberal Learning	-	2*	-	-	-	-	-	50*	-	
21	23CSEU6D20	AC	Finishing School Training - VI		2*	-	-	-	-	-	50*	-	
			Total	22	17	10							700


HONORS

Sr.	Course C			To	Teaching Scheme				heory		Practi	Total	
No.	Course Code	Type	Course Name	Credits	L	P	Т	ISE	MSE	ESE	INT	OE/ PoE	Marks
1	23CSEU6Z01	Honors	Artificial Neural Networks	3	3	-	-	20	30	50	-	-	100
2	23CSEU6Z02	Honors	Artificial Neural Networks Lab	1	-	2	-	-	-	-	25	-	25
3	23CSEU6Z03	Honors	Ethical Hacking	3	3	-	-	20	30	50	-	-	100
4	23CSEU6Z04	Honors	Ethical Hacking Lab	1	-	2	-	-	-	-	25	-	25

Note:

- \$ Open & Distance Learning
- * Values are not included in total marks

Min. Marks for Passing: 40% of total marks of individual course

Course Code:	23CSEU5P01	L	T	P	Credit
Course Name:	Database Engineering	3	0	0	3

Set Theory, Operating System, Data Structures, Basic Software Engineering Concept (SDLC)

Course Description:

The Database Engineering course provides a comprehensive understanding of database systems and their role in the design, development, and management of information systems. It introduces students to database theory, architecture, design methodologies, query languages, and data modeling techniques.

Course	• Outcomes: After the completion of the course the student will be able to -							
CO1	Understand fundamentals of Database Management Systems							
CO2	Analyze the problem & construct good database design							
CO3	Apply SQL queries to design & manage the database							
CO4	nderstand Transactions Model and the Recovery Schemes in Database Management Systems							

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2		1	3	1	1			1		2	2	1
CO2	2	2	2	2	2	3	2	3	2	3	3	2	3	3
CO3	2	2	2	2	2	3		1	1	1	1	1	3	3
CO4	1	3	2	3	3	3	1	1		1	2	1	3	3

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 INTRODUCTION TO DATABASES

6 Hours

Database System Applications, Purpose of Database Systems, View of Data, Database Languages, Specialty Databases, Database Users & Administrators, Structure of Relational Databases, Database Schema, Keys, Relational Query Languages, Relational Operations.

Unit 2 E-R MODEL AND DATABASE DESIGN

8 Hours

E-R Model: The Entity-Relationship Model, Constraints, Entity-Relationship Diagrams, Reduction to Relational Schemas

Normalization: Data Redundancies & Update Anomalies, Functional Dependencies, The Process of Normalization, First Normal Form, Second Normal Form, Third Normal Form, Boyce-Codd Normal Form.

Unit 3 | STRUCTURED QUERY LANGUAGE (SQL

7 Hours

Overview of the SQL Query Language, SQL Data Definition, Basic Structure of SQL Queries, Additional Basic Operations, Set Operations, Aggregate Functions, Nested sub Queries, Modification of Databases.

Unit 4 DATA STORAGE & INDEXING

7 Hours

File Organization, Organization of records in File, Data Dictionary Storage, Database Buffer, Basic Concepts indexing & hashing, Ordered Indices, B+ Tree Index files, Multiple-Key Access, Static Hashing.

Unit 5 TRANSACTION MANAGEMENT

7 Hours

Transaction Concept, A Simple Transaction Model, Transaction Atomicity and Durability, Transaction Isolation, Serializability, Lock-Based Protocols, Deadlock Handling, Timestamp-Based Protocols, Validation-Based Protocols

Unit 6 | RECOVERY SYSTEM

6 Hours

Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Failure with Loss of Nonvolatile Storage, Remote Backup Systems

Text Books:

- 1. Database System Concepts, A. Silberschatz, H.F. Korth, S. Sudarshan, 6th Edition, Mc Graw Hill Education.
- 2. Database Systems A practical approach to Design, Implementation and Management Thomos Connolly, Carolyn Begg, 3rd Edition, Pearson Education

- 1.Database Systems Design, Implementation and Management, Rob & Coronel 5th Edition, Thomson Course Technology
- 2. Fundamentals of Database Systems, Ramez Elmasri, Shamkant B. Navathe, 4th Edition, Pearson Education

Course Code:	23CSEU5P02	L	T	P
Course Name:	Database Engineering Lab	0	0	2

Credit

Course Prerequsites:

Set Theory, Fundamental of Software Engineering (SDLC)

Course Description:

The Database Engineering course provides a comprehensive understanding of database systems and their role in the design, development, and management of information systems. It introduces students to database theory, architecture, design methodologies, query languages, and data modeling techniques.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	Understand f	fundamentals of database management systems						
CO2	Analyze & c	Analyze & construct good database design						
CO3	Apply SQL queries to design & manage the database							

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1		3	1	1			1	1	1		
CO2	1	3	2	3	2	3	1	3	1	1	3	2		
CO3	2	3	2	2	3	3	1	3	1	1	3	2		
CO4														

Assessi	ment Scheme:		
SN	Assessment	Weightage	Remark
1	Internal	50%	Assignments, Seminar, Presentation etc.
2	POE	50%	POE

Assessment No. 1: Draw an E-R Diagram of any organization Assessment No. 2: Reduce above mentioned E-R Diagram into Relational Model Assessment No. 3: Normalize any database from first normal form to Boyce-Codd Normal Form (BCNF) Assessment No. 4: Use DDL Queries to create, alter (add, modify, rename, drop) & drop Tables Assessment No. 5: Use DML Queries to insert, delete, update & display records of the tables Assessment No. 6: Create table with integrity constraints like primary key, check, not null and unique Assessment No. 7: Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8: Display the results of set operations like union, intersections & set difference Assessment No. 9: Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings — Cryptography and Network Security Principles and Practices (Unit 1 to 5) Pearson Education (I PE). 7th Edition	Course Contents:	
Assessment No. 3 : Normalize any database from first normal form to Boyce-Codd Normal Form (BCNF) Assessment No. 4 :Use DDL Queries to create, alter (add, modify, rename, drop) & drop Tables Assessment No. 5 : Use DML Queries to insert, delete, update & display records of the tables Assessment No. 6 : Create table with integrity constraints like primary key, check, not null and unique Assessment No. 7 : Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8 : Display the results of set operations like union, intersections & set difference Assessment No. 9 : Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10 : Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11 : Display the results using String operations Assessment No. 12 : Create & Update views for any created table Assessment No. 13 : Study of B+ tree indexing Assessment No. 14 : Implement static hashing (Simulation) Text Book: Williams Stallings - Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 1 : Draw an E-R Diagram of any organization	
Assessment No. 4: Use DDL Queries to create, alter (add, modify, rename, drop) & drop Tables Assessment No. 5: Use DML Queries to insert, delete, update & display records of the tables Assessment No. 6: Create table with integrity constraints like primary key, check, not null and unique Assessment No. 7: Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8: Display the results of set operations like union, intersections & set difference Assessment No. 9: Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 2 : Reduce above mentioned E-R Diagram into Relational Model	
Assessment No. 5: Use DML Queries to insert, delete, update & display records of the tables Assessment No. 6: Create table with integrity constraints like primary key, check, not null and unique Assessment No. 7: Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8: Display the results of set operations like union, intersections & set difference Assessment No. 9: Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings — Cryptography and Network Security Principles and Practices (Unit 1 to 5)	· · · · · · · · · · · · · · · · · · ·	
Assessment No. 6 : Create table with integrity constraints like primary key, check, not null and unique Assessment No. 7 : Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8 : Display the results of set operations like union, intersections & set difference Assessment No. 9 : Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10 : Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11 : Display the results using String operations Assessment No. 12 : Create & Update views for any created table Assessment No. 13 : Study of B+ tree indexing Assessment No. 14 : Implement static hashing (Simulation) Text Book: Williams Stallings - Cryptography and Network Security Principles and Practices (Unit 1 to 5)		
Assessment No. 7: Create table with referential integrity constraints with foreign key, on delete cascade and on delete set null Assessment No. 8: Display the results of set operations like union, intersections & set difference Assessment No. 9: Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)		
Assessment No. 8 : Display the results of set operations like union, intersections & set difference Assessment No. 9 : Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10 : Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11 : Display the results using String operations Assessment No. 12 : Create & Update views for any created table Assessment No. 13 : Study of B+ tree indexing Assessment No. 14 : Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)		
Assessment No. 9: Display the results of Join Operations like cross join, self join, inner join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)		
Join, natural join, left outer join, right outer join and full outer join Assessment No. 10: Display the records using Aggregate functions like min, max, avg, sum & count. Also use group by, having clauses Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	1 1	
Assessment No. 11: Display the results using String operations Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)		
Assessment No. 12: Create & Update views for any created table Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	1 1 0 00 0	
Assessment No. 13: Study of B+ tree indexing Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 11 : Display the results using String operations	
Assessment No. 14: Implement static hashing (Simulation) Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 12 : Create & Update views for any created table	
Text Book: Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 13 : Study of B+ tree indexing	
Williams Stallings – Cryptography and Network Security Principles and Practices (Unit 1 to 5)	Assessment No. 14 : Implement static hashing (Simulation)	
1 Carson Education (Et E), / til Edition		

Course Code:	23CSEU5P03	 L	T	P	Credit
Course Name:	Information Security	3			3

Computer Network, Data Communication, Engg. Mathematics

Course Description:

This course gives you practical survey of both the principles and practice of cryptography and network security. In the first part of course, the basic issues to be addressed by a network security capability are explored by providing a tutorial and survey of cryptography and network security technology. The later part of course deals with the practice of network security.

Course	Outcomes:	After the completion of the course the student will be able to -			
CO1	Explain the u	Explain the use of Cryptographic algorithms to ensure data protection and integrity.			
CO2	Apply the kn	Apply the knowledge of cryptographic techniques to solve the problems on security.			
CO3	Illustrate the different Network and Internet security protocols in TCP/IP stack.				
CO4	Analyze the	security facilities designed to provide system security.			

CO-PO Mapping:

 11														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2					1						2	2	2
CO2	2	3	3		2	2		2				2	2	2
CO3	1				2	2						2	2	2
CO4		2	2		3	3		2				2	2	2

Assess	ment Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 | Introduction to Information Security

5 Hours

Overview:

Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security

Classical Encryption Techniques:

Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor machines, Steganography. Case Study 1.1: Perform Encryption and Decryption using crypt tool.

Unit 2 | Symmetric and Asymmetric Key Cryptography

8 Hours

Block Ciphers and the Data Encryption Standard:

Block Cipher Structure, Data Encryption Standard (DES), A DES Example, Strength of DES, Block Cipher Design Principles, AES Structure, Multiple Encryption and Triple-DES

Public Key Cryptography:

Principles of Public-Key Cryptosystems, RSA Algorithm, Other Public key Cryptosystems - Diffie-Hellman Key Exchange, ElGamal Cryptographic system

Unit 3 | Cryptographic Authentication Functions

8 Hours

Cryptographic Hash Functions:

Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Requirements and Security, Hash Functions Based on Cipher Block Chaining, Secure Hash Algorithm (SHA)

Message Authentication Codes:

Message Authentication Requirements, Message Authentication Functions, Requirements for MAC and Security of MACs, MACs Based on Hash Functions: MAC, MACs Based on Block Ciphers: DAA and CMAC

Digital Signatures:

Digital Signatures, ElGamal Digital Signature Scheme, Schnorr Digital Signature Scheme, Digital Signature Standard (DSS)

Case Study 3.1: Working of Digital signature software tool Sign server

Unit 4 | Key Management and User Authentication

8 Hours

Kev management:

Symmetric Key Distribution Using Symmetric Encryption, Symmetric Key Distribution Using Asymmetric Encryption, Distribution of Public Keys, X.509 Certificates, Public Key Infrastructure

User Authentication Protocol:

Remote User-Authentication Principles, Remote User-Authentication UsingSymmetric Encryption, Kerberos, Remote User Authentication Using Asymmetric Encryption.

Unit 5 | Internet security Protocols

6 Hours

Transport-Level Security:

Web Security Issues, Secure Sockets Layer (SSL), Transport Layer Security (TLS), HTTPS, SSH

Electronic Mail Security:

Pretty Good Privacy (PGP), S/MIME, SET

IP Security:

IP Security Overview, IP Security Policy, Encapsulating Security Payload

Case Study 5.1: Perform surveillance through packet sniffer tool like Wireshark &TCP Dump.

Unit 6 | Firewall and Intrusion detection system

8 Hours

Firewalls:

Introduction, Types of firewall, Firewall configuration, VPN, Types of VPN

IDS:

Overview of IDS, IDS Components, Approaches of IDS

SIEM:

Introduction to SIEM, SIEM Scenario and process flow, SIEM architecture, SIEM features Case study 6.1: Run Online Scanners like Virus Total, Jotti and No Virus Thanks

Reference Books:

Textbooks:

- 1. Williams Stallings Cryptography and Network Security Principles and Practices (Unit 1 to 5) Pearson Education (LPE), 7th Edition
- 2. Network Security, Firewalls, and VPNs, 3rd Edition by J. Michael Stewart, Denise Kinsey (Unit 6)

References:

- 1. Cryptography & Network Security B.A. Forouzan McGrawHill
- 2. Cryptography and network security Atul Kahate (TMGH)
- 3. Handbook of Applied Cryptography Menezes, an Oorschot, and S.A. Vanstone

Course Code:	23CSEU5P04		L	T	P	Credit
Course Name:	Smart Phone Appli	cation Development	2	0	2	3

Course Prerequsites:

Basic programming knowledge

Course Description:

This course provides a comprehensive introduction to Kotlin for Android development, covering language basics, and advanced features. Students will explores user interface design with layouts and views, navigation using intents, dialogs, menus, and various Android storage options, including SQLite databases and content providers.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	Learn the basics of Kotlin and how to use it for Android apps							
CO2								
	Understand how the Android system works and the main building blocks of apps							
	Understand l	now the Android system works and the main building blocks of apps						
CO3	†	now the Android system works and the main building blocks of apps a experience in designing how apps look and how users move around in them						

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1								1	1		3	1	
CO2	1	1	2		3			2	1	2			3	2
CO3	1	1	2		3			2	1	1		3	3	2
CO4					3				1				2	

ASSUSSI.	icht Scheme.		
SN	Assessment	Weightage	Remark

l	SN	Assessment	Weightage	Remark
	1	Internal Assessment	50%	Assignment, Test, Quiz, Seminar, Presentation, etc.
	2	POE	50%	Practical/Oral Examination

Unit 1 Introduction to Kotlin Programming Language

6 Hours

"Kotlin Basics: Kotlin Advantages, How Kotlin Program Work, Creating, Compiling and running Kotlin program, Input and Output, Kotlin Variables, Kotlin Data Types, operators, Type checks and casts, arrays, Control Flow statements, functions, Null safety. Object-Oriented Programming (OOP) in Kotlin: Object and Classes, constructors, overloading,

Abstract Class, Interface, Sealed Class, Generic Class, Enum Class, Inner and anonymous Inner class. Non-Blocking Programming Techniques in Kotlin: Threading, Callbacks, Futures, promises, and others, Reactive Extensions, Coroutines. Advanced Kotlin Concepts: Kotlin collections, exception handling, Packages and Imports. Introduction to Kotlin Multiplatform"

Unit 2 | Introduction to Android Application

5 Hours

Background: Evolution of Mobile Operating Systems, History of Android versions, Android OS architecture: Android OS Stack, Linux kernel, Native Libraries/DVM, Application Framework, Applications. Android Application Components: Activity, Fragments, Intents, BroadcastReceivers, Content Providers, Services Activities: Activity lifecycle, Activity Back Stack Fragments: Definition and purpose of Fragments, Fragment Lifecycle and its relationship with Activity lifecycle.

Unit 3 | Creating Android Applications

5 Hours

Introduction to Android SDK Components of android SDK (sdk tools) Compilation, Building and running of android application

Creating a Android Project: Project Directory Structure, Logging in Android (Logcat), Managing Exception with Logcat, Android Manifest File, Android Resources and Resource Directories, Permissions."

Unit 4 Layouts 5 Hours

"View Hierarchy: Android View and View Group classes and XML Elements, Layouts: Linear Layouts, Relative Layout, Table Layout, Frame Layout, Constraint Layouts, and their important properties. Padding and Margins with Layouts. Basic Views their properties and Events: TextView, Buttons & types, ImageView, EditText, CheckBox, ImageView, VideoView, GridView, RatingBar etc. Advanced Views: ListView, RecyclerView, Card View Intents: Implicit & Explicit Intents, Component of Intent, examples of some standard intents (Telephony, SMS etc), Android Intent Messaging via Intent Objects, Using Intents with Activities, pending Intents, Broadcast Receivers"

Unit 5 | Dialogs and Menu

5 Hours

Dialogs: Components of Dialog, Alert Dialog, Seek Bar, Date Picker Dialog, Time Picker Dialog, Custom Dialogs

Menus: Menu Inflators, Context Menu, Options Menu, Handling menu click events.

Unit 6 | Android Storage

5 Hours

Android Storage Options: Shared Preferences, Internal Storage, External Storage SQLite Databases: SQLite Database in your application, Installing SQLite plugin, DbHelper, The Database Schema and Its Creation, Four Major Operations of SQLite. SQLite databases and Content Providers: Creating an SQLite Database, querying an SQLite DB Table

Text Books:

- 1. Android Programming with Kotlin for Beginners" by John Horton
- 2. Programming Android with Kotlin by Pierre-Olivier Laurence, Amanda Hinchman-Dominguez, Mike Dunn, G. Blake Meike, O'Reilly Media, Inc.
- 3. Learn Kotlin for Android Development by Peter Späth, APress; 1st ed. edition

Course Code:	23CSEU5P05	L	T	P	Credit
Course Name:	Software Engineering	2			2

Problem Solving Using C

Course Description:

This course gives you fundamentals of software development in the current IT industry. The fundamentals are divided into different parts. The first part deals with different software models followed for development of software. The subsequent parts deals with requirement specification, software design with UML, coding and testing respectively. You will get complete insight of software development process which will help you a lot in your career in IT industry

Course Outcomes: After the completion of the course the student will be able to -					
CO1 Summarize the basic processes of software development and various SDLC models.					
CO2	Analyze software requirements analysis and formulate design solution for a software.				
CO3	CO3 Apply new software design techniques and technologies to bring out innovative solutions for the socital problems evolving into their continuous professional development.				
CO4	Use knowledge of software testing approaches for verification and validation.				

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1										2			
CO2		1	2		1				3	3	1		1	2
CO3		1	1		2			1	3	3	2	3	3	2
CO4	1	1	1		2			1	3	2		3	3	1

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents

3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation	n, etc.
4	End Semester Examination (ESE)	50%	100% course contents	
Unit 1	Software and Software Process			5 Hours
Softwar Method	re Development Process Models- Waterfal	l Model, Proto (AD),Dynamio	e Process, Desired Characteristics of a Software otype Methodology, Agile Software Development & Systems Development Model Methodology, Spacent.	nt
Unit 2	Software Requirement Analysis and S			4 Hours
Softwar Metrics	e Requirements, Problem Analysis, Requi	rements Speci	fication, Functional Specifications with use case	s, Validation,
Unit 3	Software Design Approaches			6 Hours
_	Principles, Module-Level Concepts, Design of and OO Design, OO Concepts, Design O	-	d Specification, Structured Design Methodology	y, OO
Unit 4	UML Structural Modeling			4 Hours
	Relationship, Common Mechanics, Diagraes, Types, and Roles, Packages, Instances		Diagrams, Advanced Classes, Advanced Relatio	nships,
Unit 5	UML Behavioral and Architectural N	Modeling		5 Hours
		_	ction Diagrams, Activity Diagrams Architectura vorks, Component Diagrams, Deployment Diagr	
Unit 6	Coding and Testing			4 Hours
	nming Principles and Guidelines, Coding sting, White-Box Testing.	Process, Refac	etoring, Verification, Metrics, Testing Fundamen	tals, Black-
Text Bo				
	ntegrated approach to Software Engineering User Guide- Grady Booch, James Rumba		ote, 3rd Edition, Narosa Publication. (1,2,3,6)	

2. UML User Guide- Grady Booch, James Rumbaugh, Publisher: Addison Wesley (4,5)

- 1. Software Engineering- A Practitioner's Approach Roger S. Pressman (TMH), ISBN-13: 978-0071267823 ISBN-10: 0071267824
- 2. Software Engineering- Ian Sommerville Pearson, 10th Edition, ISBN-13: 9780137503148
- 3. Software Engineering, Kogent Learning Solutions Inc., Dreamtech Press India Pvt. Ltd, ISBN: 9789350042663, 9789350042663

Course Code:	23CSEU5E08	L	T	P	Credit
Course Name:	Internet of Things	3	0	0	3

"Computer Networks and Internet fundamentals

Programming skills in C/C++ or Python

Basic understanding of sensors and electronic components"

Course Description:

This course introduces the fundamentals of the Internet of Things (IoT) and its integration with cloud computing. It covers IoT architecture, sensors, microcontrollers (Arduino, ESP32, Raspberry Pi), communication protocols, and cloud platforms such as AWS. Students will learn to interface devices, collect data, and use cloud services for storage and analytics. The course also explores real-world IoT applications in various domains and addresses challenges related to security, privacy, and ethics.

Course	Outcomes:	After the completion of the course the student will be able to -								
CO1	Understand t	he fundamental concepts, architecture, and enabling technologies of the Internet of Things								
	(IoT).									
CO2	Demonstrate	Demonstrate the ability to interface sensors and actuators with microcontrollers and implement basic IoT								
CO3	Analyze the t	use of wireless communication protocols and cloud services in designing scalable IoT								
	solutions.									
CO4	Apply data h	andling and analytics techniques to IoT applications and examine real-world use cases and et								

CO-PO Mapping:

11			_			_			_		_	_		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				2							3	1
CO2	3	1	2	1	1	1					2		3	2
CO3	2	3		2	2	2							3	3
CO4														

1 200 0002			
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 | Fundamentals of IoT

6 Hours

Introduction, Definitions & Characteristics of IoT, IoT Architectures, Physical & Logical Design of IoT, Enabling Technologies in IoT, History of IoT, About Things in IoT, The Identifiers in IoT, About the Internet in IoT, IoT frameworks, IoT and M2M

Unit 2 | IoT Physical Devices and Endpoints

8 Hours

Microcontrollers, Introduction to Arduino board, various boards of Arduino.

Arduino Uno: Arduino Uno Pin Layout, Arduino IDE, Arduino programming,

ESP32 : ESP32 pin layout, advantages of ESP32 board, Interfacing sensors with microcontroller

Raspberry-Pi : Introduction to Raspberry-Pi, installation of raspberry-pi, raspberry pi configuration, Introduction to Python, Interfacing sensors with raspberry pi.

Unit 3 | Sensors and Protocol

7 Hours

Sensors: Light sensor, temperature sensor with thermistor, voltage sensor, ADC and DAC, Gas sensors, Temperature and Humidity Sensor, Motion Detection Sensors, Wireless Bluetooth Sensors, Level Sensors, Embedded Sensors, Distance Measurement with ultrasound sensor, Biometric, Load, Flow, and pressure sensor

Unit 4 | IoT Physical Servers and Cloud Offerings

7 Hours

Introduction to Cloud Storage models and communication APIs

Web Server – Web server for IoT,

Cloud for IoT, AWS services for IoT

Unit 5 Data Handling& Analytics

7 Hours

Introduction, Bigdata, Types of data, Characteristics of Big data, Data handling Technologies, Flow of data, Data acquisition, Data Storage, Introduction to Hadoop. Introduction to data Analytics, Types of Data analytics, Local Analytics, Cloud analytics and applications

Unit 6 Applications of IoT

6 Hours

Home Automation, Smart Cities, Energy, Retail Management, Logistics, Agriculture, Health and Lifestyle, Industrial IoT,

Legal challenges, IoT design Ethics, IoT in Environmental Protection, Security and challenges in IoT

Text Books:

- 1. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 3. Editors Ovidiu Vermesan
- 2. Peter Friess, Internet of Things From Research and Innovation to Market Deployment', River

Publishers 2014

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- 2. Internet of Things (A Hands-on Approach)" by Arshdeep Bahga and Vijay Madisetti

Course Code:	23CSEU5E09	Ī	L	T	P	Credit
Course Name:	Computer Graphics and Multimedia Techniques		3	0	0	3

1. Basic programming knowledge, Linear Algebra

Course Description:

This course provides a comprehensive introduction to the principles and applications of computer graphics and multimedia technologies. Students will learn about graphics systems, algorithms for rendering 2D and 3D graphics, animation techniques, and multimedia development.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	Understand f	Fundamental computer graphics concepts and algorithms						
CO2	Develop mul	velop multimedia applications integrating various media types						
CO3	Create basic	animations and interactive graphics						
CO4	Apply graph	ics and multimedia techniques to solve real-world problems						

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2				1							1	1
CO2	1	2	3	1	3	2				1	2		3	3
CO3	1	2	3	1	3	2				1	2		3	3
CO4	1	3	3	1	3	3				1	2		3	3

Assessi	ment Scheme:		_	
SN	Assessment		Weightage	Remark
1	In Semester Evalua	tion 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)		30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)		10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Exan (ESE)	nination	50%	100% course contents

Unit 1 | **An Introduction Graphics System**

4 Hours

Computer Graphics and Its Types, Application of computer graphics, Graphics Systems: Video Display Devices, Raster Scan Systems, Random Scan Systems, Graphics Monitors and Work Stations, Input Devices, Hard Copy Devices, Graphics Software.

Unit 2 | Geometric Transformations

10 Hours

Basic Transformations, Matrix Representation and Homogeneous Coordinates, Composite Transformations, Reflection and Shearing. Two-Dimension Viewing: The viewing Pipeline, Window to view port coordinate transformation, Clipping Operations, Point Clipping, Line Clipping, Polygon Clipping, Text Clipping, Exterior Clipping Three-Dimensional Concepts: Three Dimensional Display Methods, 3D Transformations, Parallel Proection and Perspective Projection

Unit 3 Raster Scan Graphics

7 Hours

Line Drawing Algorithms, Circle Generating Algorithms, Scan-Line Polygon Fill Algorithm, Boundary-Fill Algorithm, Flood Fill Algorithm

Unit 4 | ILLUMINATION AND COLOR MODELS

7 Hours

Light sources, Basic illumination models, Displaying light intensities, Halftone patterns and Dithering Techniques, Polygon Rendering methods, Ray tracing methods

Unit 5 | MULTIMEDIA SYSTEM DESIGN & MULTIMEDIA FILE HANDLING

7 Hours

Multimedia basics – Multimedia applications – Multimedia system architecture – Evolving technologies for multimedia – Defining objects for multimedia systems – Multimedia data interface standards – Multimedia databases. Compression and decompression – Data and file format standards – Multimedia I/O technologies – Digital voice and audio – Video image and animation – Full motion video – Storage and retrieval technologies.

Unit 6 Animation 6 Hours

Basics of Animation: Definition, Traditional Animation Techniques, Frame based Animation Techniques, Tweeking, Morphing, Computer Animation Tools: Hardware, Software, Applications for Computer Animation

Text Books:

- 1. Donald Hearn & M. Pauline Baker, "Computer Graphics with OpenGL", Third Edition, 2004, Pearson Education, Inc. New Delhi.
- 2. Ze-NianLi and Mark S. Drew, "Fundamentals of Multimedia", First Edition, 2004, PHI Learning Pvt. Ltd., New Delhi.
- 3. DP Mukherjee, Fundamentals of Computer Graphics and Multimedia, PHI

Reference Books:

1. Andleigh, P. K and KiranThakrar, —Multimedia Systems and Designl, PHI, 2003

Course Code:	23CSEU5E10	L	•
Course Name:	Principles of AI/ML	3	(

Probability and Statistics

Programming skills in C/C++ or Python

Data Structures and Algorithms

Course Description:

This course offers a comprehensive introduction to Artificial Intelligence, covering fundamental concepts such as knowledge representation, search strategies, logic-based reasoning, and learning algorithms. It explores classical and heuristic search methods, propositional and predicate logic, and key machine learning techniques including decision trees, neural networks, and reinforcement learning. The course also introduces probabilistic reasoning using Bayesian networks, equipping students with the theoretical and practical tools to design intelligent systems and solve complex real-world problems.

Credit 3

Course	Outcomes:	After the completion of the course the student will be able to -							
CO1	Explain the main approaches to Artificial intelligence, Machine learning along with the limitations and								
	challenges associated with AI and ML.								
CO2	Apply AI concepts to solve real-world problems								
CO3	Analyse and interpret data using AI techniques.								
CO4									

CO-PO Mapping:

_													_		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	2				2							3	1
	CO2	3	1	2	1	1	1					2		3	2
	CO3	2	3		2	2	2							3	3
	CO4														

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 Introduction to Artificial Intelligence

6 Hours

Introduction, what is AI, Strong Methods and weak Methods. Uses and Limitations,

Knowledge Representation: Need for good representation, semantic nets, Frames, , Search Spaces, Semantics Tress, Search Trees, Combinatorial Explosion, Problem reduction, Goal Trees, Combinatorial Explosion.

Unit 2 | Search Methodologies

8 Hours

Introduction, Problem solving as search, Data driven or goal driven search, Generate and test, Properties of search methods, Depth First Iterative Deepening, Using Heuristics for Search, Hill Climbing, Best-First Search, Identifying Optimal Paths, Constraint Satisfaction search, Forward Checking, Local Search and Meta heuristics, Simulated Annealing. Genetic Algorithms for search, Real time A*, Bidirectional search, Nondeterministic search, non-chronological backtracking.

Unit 3 | Prepositional and Predicate Logic

7 Hours

Introduction, what is Logic, Why Logic is used in Artificial Intelligence, Logical Operators, translating between English and Logic Notation, The deduction Theorem, Soundness, Completeness, Decidability, Monotonicity, Abduction and Inductive reasoning, Modal logics and possible worlds, Dealing with change.

Unit 4 | Introduction to Machine Learning

7 Hours

Introduction, Training Rote Learning, Learning Concepts, General-to Specific Ordering, Version Spaces, Candidate Elimination, Inductive Bias, Decision-Tree Induction, The Problem of Overfitting, The Nearest Neighbor Algorithm, Backpropagation algorithms, Reinforcement Learning

Unit 5 Neural Networks:

7 Hours

Introduction, Neurons, Perceptrons, Multilayer Neural Networks, Recurrent Networks, Unsupervised Learning Networks, Evolving Neural Networks.

Unit 6 Probabilistic Reasoning and Bayesian Belief Networks

6 Hours

Introduction, Probabilistic Reasoning, Joint Probability Distributions, Bayes' Theorem, Simple Bayesian Concept Learning, Bayesian Belief Networks, The Noisy-V Function, Bayes' Optimal Classifier, The Naïve Bayes Classifier.

Text Books:

- 1. Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett, 2004.
- 2. Tom M. Mitchell, "Machine Learning", Mcgraw-Hill Education (Indian Edition), 2013.

- 1. Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill 3rd edition 2013.
- 2. Stuart Russel, Peter Norvig: Artiificial Intelligence A Modern Approach, Pearson 3rd edition 2013.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Edition, PHI Learning Pvt. Ltd., 2013.
- 4. T Hastie, R. Tibshirani, J.H.Fiedman, "The Elements of statistical learning", Springer, 1st Edition 2001.

Course Code:	23CSEU5E11	L	T	P	Credit
Course Name:	Internet of Things Lab	0	0	2	1

"Computer Networks and Internet fundamentals

Programming skills in C/C++ or Python

Basic understanding of sensors and electronic components"

Course Description:

This course introduces the fundamentals of the Internet of Things (IoT) and its integration with cloud computing. It covers IoT architecture, sensors, microcontrollers (Arduino, ESP32, Raspberry Pi), communication protocols, and cloud platforms such as AWS. Students will learn to interface devices, collect data, and use cloud services for storage and analytics. The course also explores real-world IoT applications in various domains and addresses challenges related to security, privacy, and ethics.

Course	Outcomes:	After the completion of the course the student will be able to -							
CO1	Configure an	d program microcontrollers like Arduino, ESP32, and Raspberry Pi by interfacing various							
	sensors and actuators.								
CO2	Connect IoT devices to cloud platforms and visualize sensor data.								
CO3	Implement IoT communication using protocols like MQTT and HTTP.								
CO4	Develop a mini-project applying IoT and cloud integration in a real-world use case.								

CO-PO Mapping:

_	TITHE	5													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	2				2							3	1
	CO2	3	1	2	1	1	1					2		3	2
	CO3	2	3		2	2	2							3	3
	CO4														

Assessr	nent Scheme:		
SN	Assessment	Weightage	Remark
1	Internal	100%	Assignment, Test, Quiz, Seminar, Presentation, etc.

List of Experiments

1Study and setup of Arduino/ESP32 boards and basic programming using IDE

2Interfacing LED and Push Button with Arduino/ESP32

3Interfacing Temperature and Humidity sensor (e.g., DHT11) and displaying data

4Interfacing Ultrasonic sensor for distance measurement

5Interfacing Gas sensor or Light sensor with ESP32/Arduino and displaying output

6Interfacing with Actuators – DC Motor/Relay using Arduino/ESP32

7Introduction to Raspberry Pi: OS Installation, Python Programming Basics

8Sensor interfacing with Raspberry Pi and sending data over local network

9Implementing communication between two IoT devices using MQTT protocol

10Sending sensor data to cloud using ThingSpeak or Blynk platform

11Using AWS IoT Core for device connection and real-time data visualization

12Mini-project: Design and develop a complete IoT solution using microcontroller, sensors, cloud connectivity, and a simple dashboard for data monitoring

Text Books:

- 1. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 3. Editors Ovidiu Vermesan
- 2. Peter Friess, 'Internet of Things From Research and Innovation to Market Deployment', River Publishers, 2014
- 1. Hakima Chaouchi, "The Internet of Things Connecting Objects to the Web" ISBN:

978-1-84821-140-7, Wiley Publications

2. Olivier Hersent, David Boswarthick, and Omar Elloumi, — "The Internet of Things:

Key Applications and Protocols", WileyPublications

3. Vijay Madisetti and ArshdeepBahga, — "Internet of Things (A Hands-on-Approach)",

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- 2. Internet of Things (A Hands-on Approach)" by Arshdeep Bahga and Vijay Madisetti
- 3. Introduction to IoT, Sudip Misra, Anandarup Mukherjee, Arjit Roy, CAMBRIDGE UNIVERSITY, PRESS.
- 4. Internet of Things Hanads on Approach, Ashdreep Bhaga, Vijay Midishetti, Universities Press

Course Code:	23CSEU5E12	L	T	P	Credit
Course Name:	Computer Graphics and Multimedia Techniques Lab	0	0	2	1

Course Prerequiite

1. Basic programming knowledge, Linear Algebra

Course Description:

This laboratory course provides hands-on experience in implementing computer graphics algorithms and developing multimedia applications. Students will work with graphics programming, implement fundamental algorithms, create animations, and develop interactive multimedia systems.

Course Outcome	s:	After the completion of the course the student will be able to -						
CO1	Implement fu	indamental computer graphics concepts and algorithms						
CO2	Develop mul	Develop multimedia applications integrating various media types						
CO3	Create basic animations and interactive graphics							
CO4	cs and multimedia techniques to solve real-world problems							

CO-PO Mapping:

- 5	•														
	·	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	1			1								2	
	CO2	1	2	2	1	3	2							3	3
	CO3	1	2	2		3								3	3
	CO4	2	3	3	3	3	3							3	3

Assessment Scheme:				
SN	Assessment		Weightage	Remark
1	Internal		100%	Laboratory assignments, internal POE etc.

Course Contents	:						
Experiment 1:	Graphics System Setup and Basic Drawing	2 Hours					
Experiment 2:	Implementation of 2D Transformations	2 Hours					
Experiment 3:	Implemenation of Line drawing algorithm	2 Hours					
Experiment 4:	Implementation of Circle drawing algorithm						
Experiment 5:	Implementation of Polygon filling algorithms						
Experiment 6:	Implementation of basic ray tracing algorithm.	2 Hours					
Experiment 7:	Create a simple multimedia file converter that can convert between different image an						
Experiment 8:	Create a simple database system to store and retrieve multimedia file information with basic search functionality.	4 Hours					
Experiment 9:	Create a basic 2D animation tool that can generate simple animations using frame-bas	4 Hours					

Text Books:

- 1. David F. Rogers, J. Alan Adams, "Mathematical elements for Computer Graphics", MGH International
- 2. David F. Rogers, "Procedural elements for Computer Graphics", MGH International
- 3. Donald Hearn & M. Pauline Baker, "Computer Graphics with OpenGL", Third Edition, 2004, Pearson Education, Inc. New Delhi.
- 4. Ze-NianLi and Mark S. Drew, "Fundamentals of Multimedia", First Edition, 2004, PHI Learning Pvt. Ltd., New Delhi.

- 1. Andleigh, P. K and KiranThakrar, —Multimedia Systems and Designl, PHI, 2003
- 2. Principles of Computer Graphics Theory and Practice Using OpenGL and Maya, Shalini Govil-Pai, (Springer).
- 3. Computer Graphics (second Edition) Zhigang Xiang & Plastock (Schaum & #39;s Outline Series, TMGH).
- 4. Computer Graphics Using OpenGL F.S. Hill Jr. Stephen M. Kelley, (Pearson Education).

Course Code:	23CSEU5E13	L	T	P	Credit
Course Name:	Principles of AI/ML Laboratory	0	0	2	1

Basics of Mathematics, Statistics etc.

Course Description:

This course offers a comprehensive introduction to Artificial Intelligence, covering fundamental concepts such as knowledge representation, search strategies, logic-based reasoning, and learning algorithms. It explores classical and heuristic search methods, propositional and predicate logic, and key machine learning techniques including decision trees, neural networks, and reinforcement learning. The course also introduces probabilistic reasoning using Bayesian networks, equipping students with the theoretical and practical tools to design intelligent systems and solve complex real-world problems.

Course Outcome	s:	After the completion of the course the student will be able to -			
CO1	Implement a	nd evaluate various AI search algorithms and knowledge representation techniques for			
	problem-solving applications.				
CO2	Design and o	levelop logic-based reasoning systems using propositional and predicate logic.			
CO3	Build and an	alyze machine learning models for real-world datasets.			

CO-PO Mapping:

-6	•														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	2											3	3
	CO2	3	2	2	2	3	3							3	3
	CO3	3	3	3	3	3	3							3	3
	CO4														

Assessment So	cheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Course Contents	:						
Experiment 1:	Experiment 1: Study of basic AI concepts and implement knowledge representation using semantic networks and frames.						
Experiment 2:	Implement and analyze uninformed search algorithms for problem-solving.	2 Hours					
Experiment 3:	Implement informed search algorithms using heuristics.						
Experiment 4:	Implement logical reasoning systems using propositional and predicate logic.	2 Hours					
Experiment 5:	Implement decision tree learning algorithm and analyze its performance.	2 Hours					
Experiment 6:	Implement perceptron and multi-layer neural networks for classification tasks.	4 Hours					
Experiment 7:	Implement Naive Bayes classifier and understand probabilistic reasoning in AI.	4 Hours					
Experiment 8:	Implement K-means clustering algorithms	2 Hours					
Experiment 9:	Implement Q-learning algorithm for reinforcement learning problems.						

Text Books:

- 1. Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett, 2004.
- 2. Tom M. Mitchell, "Machine Learning", Mcgraw-Hill Education (Indian Edition), 2013.

- 1. Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill 3rd edition 2013.
- 2. Stuart Russel, Peter Norvig: Artiificial Intelligence A Modern Approach, Pearson 3rd edition 2013.
- 3. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Edition, PHI Learning Pvt. Ltd., 2013.
- 4. T Hastie, R. Tibshirani, J.H.Fiedman, "The Elements of statistical learning", Springer, 1st Edition 2001.

Course Code:	23CSEU5O14	L	T	P	Credit
Course Name:	Cloud Computing	2			2

Basic knowledge of computer networks, operating systems, and distributed systems.

Course Description:

This course introduces the fundamental concepts of cloud computing, including its architecture, service models, and deployment methods. It covers essential technologies such as virtualization, cloud infrastructure, and major cloud platforms like AWS, Azure, and Google Cloud. The course also explores cloud security, applications in various domains, and emerging trends enabling students to understand and apply cloud technologies in real-world scenarios.

Course	Outcomes:	After the completion of the course the student will be able to -				
CO1 Understand fundamental concepts, architecture, and service models of cloud computing.						
CO2	O2 Analyze virtualization technologies and cloud infrastructure components.					
CO3	Demonstrate t	the use of cloud platforms and assess security and application aspects in cloud environments.				

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	2	2				1		1	2	1	1
CO2	3	3	1	3	3		1		1	2	2	2	3	2
CO3	3	2	1	3	3		2		1	2	2	2	3	3

SN	Assessment	Weightage	Remark
1	End Semester Evaluation [50 Marks]	100%	100% Course Contents

Unit 1 Introduction to Cloud Computing

7 Hours

Definition, characteristics and benefits of cloud computing, history of cloud computing, types of clouds (public, private, hybrid), service models: IaaS, PaaS, SaaS, challenges and risks in cloud computing, cloud computing vs grid computing vs cluster computing.

Unit 2 Virtualization and Cloud Infrastructure

7 Hours

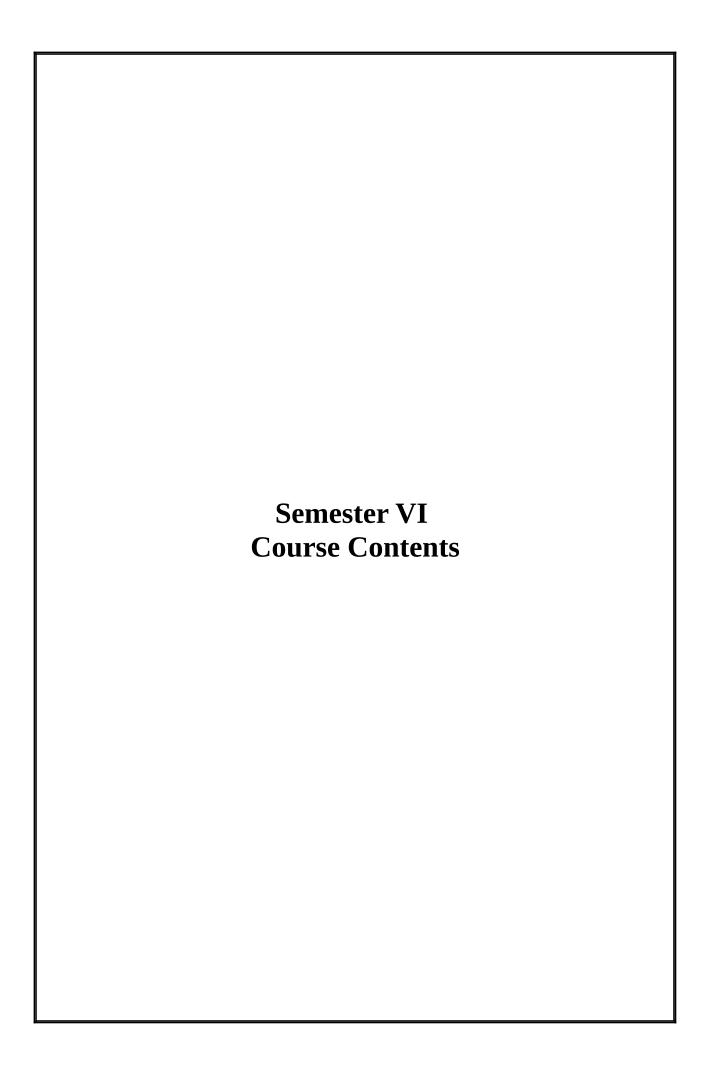
Virtualization: concept, types, hypervisors (Type 1 and Type 2), virtual machines, server, storage, and network virtualization; Cloud infrastructure: architecture, data centers, scalability, elasticity, load balancing, containerization (Docker, Kubernetes).

Unit 3 | Cloud Services and Platforms

7 Hours

Cloud service providers: AWS, Microsoft Azure, Google Cloud; compute services (EC2, Azure VM), storage services (S3, Azure Blob), database services, cloud deployment models; APIs in cloud computing, monitoring and management tools.

Unit 4 | Security, Applications and Future Trends


7 Hours

Security in cloud: data security, privacy, identity and access management, encryption; compliance and legal issues; cloud applications in healthcare, education, IoT; cloud-native development; edge and fog computing, future trends in cloud.

Text Books:

- 1. Mastering Cloud Computing Buyya R, Vecchiola C, Selvi S T, McGraw Hill Education (India), 2013
- 2. Cloud Computing Principles and Paradigms Buyya R, Broberg J, Goscinski A, Wiley, 2011
- 3. Docker Cookbook Sébastien Goasguen, O'reilly Nov. 2015 First Edition

- 1. Cloud Computing Concepts, Technology & Architecture Thomas Erl, Zaigham Mahmood, and Ricardo Puttini
- 2. Cloud Computing Bible Barrie Sosinsky , Wiley Publishing Inc. 2011
- 3. Cloud Native DevOps with Kubernetes John Arundel and Justin Domingus
- 4. A to z on Docker: A complete Hands-On Guide to Docker Container Swapnil Jain

Course Code:	23CSEU6P01	L	Т	P	Credit
Course Name:	System Programing	3			3

Data Structures, Programming concepts.

Course Description:

This course explores the principles, algorithms, and data structures involved in the design and construction of compilers. Units include Language processors, lexical analysis, context-free grammars, push-down parsers, LR and LALR parsers, other parsing techniques, symbol tables and introduction to intermediate code generation.

Course	Course Outcomes: After the completion of the course the student will be able to -						
CO1	CO1 Explain basics of Languages and Language processors for the System programming.						
CO2	CO2 Analyze phases and steps for Software Program Execution in detail from Analysis to Execution.						
CO3	CO3 Explain different phases of compiler in detail.						
CO4	CO4 Design and develop modules for different phases of Compiler.						

CO-PO Mapping:

	0													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1				2						2			
CO2	1			1	1						1		2	1
CO3	1				2						1	1	3	1
CO4	1			1	2						1	1	3	1

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 Language Processes & Assembler

8 Hours

Introduction, language processing activities, Fundamentals of language processing, Fundamentals of language Specification

Assemblers: Elements of assembly language programming, a simple assembly scheme, pass structure of assemblers, design of a two pass assembler.

Unit 2 | Macros and Macro Processors

4 Hours

Macro definition and call, Macro expansion, Nested macro calls, Advanced macro facilities, Design of macro preprocessor.

Unit 3 Phases in Compilers-Lexical Analysis & Syntax Analysis

10 Hours

Role of a Lexical analyzer, input buffering, specification and recognition of tokens, Role of Parser, Writing grammars for context free environments, Top-down parsing- Recursive descent and predictive parsers (LL), Bottom-Up parsing

Unit 4 Syntax Directed Translation and Intermediate Code Generation

4 Hours

Syntax directed definitions, construction of syntax tree, S-attributed definitions, L-attributed definitions.

Unit 5 | Code Optimization

8 Hours

Sources of optimization, Peephole optimization and basic blocks, loops in flow graphs, Data flow analysis and equations, code improving transformation and aliases

Unit 6 | Code Generation

6 Hours

Issues in design of a code generator and target machine, Run time storage management, Basic blocks and flow graphs, Next use information and simple code generator

Text Books:

- 1. Systems Programming and Operating Systems- D.M. Dhamdhere, Second revised Edition, 2005, Tata McGraw- Hill Publishing Company limited, New Delhi.
- 2. Compilers Principles, Techniques and Tools- A.V. Aho, R. Shethi and J.D. Ullman, Pearson Education.

- 1. System Programming J. J. Donovan (Mc-Graw Hill).
- 2. Compilers Principles, Techniques and Tools- A.V. Aho, R. Shethiand J.D. Ullman, Addison Wesley Publishing Company.

Course Code:	23CSEU6P02	L	T	P	Credit
Course Name:	Cloud Computing	3	0	0	3

Basic knowledge of computer networks, operating systems, and distributed systems.

Course Description:

Cloud Computing course will focus on the evolution of cloud environment, its architecture, types, prominent cloud platform examples, virtualization techniques and migration, docker-container & Kubernetes, security and management.

Course	Outcomes:	After the completion of the course the student will be able to -
CO1	Explain the cl	loud computing architecture, types and models
CO2	rirtualization techniques	
CO3	Compare diff	erent architectures and platforms of cloud computing.
CO4	Summarize se	ecurity threats and security measure for cloud computing

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	2				1	2	2	1	3	3
CO2	3	3	2	3	3				2	2	2	2	3	3
CO3	3	3	3	2	3	2	1	1	2	2	2	2	3	3
CO4	3	2	2	3	2	2	1		2	2	3	2	3	3

SN	Assessment	Weightage	Remark
1	In Semester Evaluation1 [10 Marks]	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination [30 Marl	30%	50% Course Contents
3	In Semester Evaluation2 [10 Marks]	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination [50 Marks]	50%	100% Course Contents

Unit 1 Introduction 7 Hours

Definition, Historical Developments, Computing Platforms and Technologies. Building cloud computing environments, Principles of Parallel and Distributed Computing: Parallel versus Distributed Computing, Elements of Parallel Computing, Elements of Distributed Computing, and Technologies for Distributed Computing.

Unit 2 Virtualization 7 Hours

Characteristics, Virtualization Techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization

Unit 3 | Cloud Computing Architecture

7 Hours

Cloud Reference Model, Types of Clouds – Public, Private, Hybrid and Community cloud, Types of Services – IaaS, PaaS, SaaS, Economics of Clouds, Open Challenges, Public Clouds: Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure.

Unit 4 | Migration into cloud and Virtual machine Provisioning

7 Hours

Broad Approaches to Migrating into the Cloud, The Seven-Step Model of Migration into a Cloud, Virtual Machines Provisioning and Manageability, Virtual Machine Migration Services, VM Provisioning and Migration in Action, Provisioning in the Cloud Context.

Unit 5 | Advanced Concepts – Docker, Container and Kubernetes

7 Hours

Introduction to CaaS, Why containers? Difference between Virtualization and Containers. Introduction to Containers, Docker and its architecture (Jain), Understanding Docker Container, Networking. Kuberentes – Introduction, Architecture. (cookbook) Case Study (Any case study available on the Internet such as - IBM, AWS, Google Qwiklabs using Kubernetes, docker container).

Unit 6 | Cloud Security & Management

7 Hours

Fundamental cloud security – Basic terms and concepts, Threat agents, cloud security threats, case study example. Cloud Management Mechanisms - SLA management and case study. Cloud Security Mechanisms – PKI, IAM and SSO with case studies.

Text Books:

- 1. Mastering Cloud Computing Buyya R, Vecchiola C, Selvi S T, McGraw Hill Education (India), 2013
- 2. Cloud Computing Principles and Paradigms Buyya R, Broberg J, Goscinski A, Wiley, 2011
- 3. Cloud Computing Concepts, Technology & Architecture Thomas Erl, Zaigham Mahmood, and Ricardo Puttini
- 4. A to z on Docker: A complete Hands-On Guide to Docker Container Swapnil Jain
- 5. Docker Cookbook Sébastien Goasguen, O'reilly Nov. 2015 First Edition

- 1. Cloud Computing Bible Barrie Sosinsky , Wiley Publishing Inc. 2011
- 2. Cloud Native DevOps with Kubernetes John Arundel and Justin Domingus

Course Code:	23CSEU6P03	\mathbf{L}	T	P	Credit
Course Name:	Cloud Computing Lab			2	1

Basic understanding of computer networks, operating systems, and programming skills in Python or Java.

Course Description:

This laboratory course offers hands-on experience with fundamental cloud computing services and tools. Students will learn to work with virtual machines, cloud storage, databases, web hosting, and basic security features on platforms like AWS, Azure, or Google Cloud. The course aims to develop practical skills in deploying, managing, and monitoring cloud-based applications and resources.

Course	Outcomes:	After the completion of the course the student will be able to -							
CO1	Use public clou	se public cloud environment							
CO2	Build virtual ma	achines using virtualization techniques							
CO3	Make use of co	ntainers for software deployment							

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2		3	1					2	3	3	2
CO2	2		2		3	1					2	3	3	2
CO3	2		2		3	1					2	3	3	2

SN	Assessment	Weightage	Remark
1	In Semester Evaluation [25 Marks]	50%	Experiment, Practical Performance and Oral Exam etc.
2	POE [25 Marks]	50%	100% course contents

List of E	Experiments:							
1	Use Google Col	lab book for writing program						
2	Use google API	s to access google cloud services						
3	Create Virtual M	Machine using emulator - emue and virtual library						
4	Create Virtual Machines using KVM library - paravirtualized machine							
5	Create bare-met	Create bare-metal virtual machine						
6	Create container	using lxc						
7	Create a contain	er using docker - docker desktop, docker CLI						
8	Networking of I	Oocker Containers						
9	Building Docker	r Image						
10	Check the usage	e reports or activity logs of your cloud resources.						

Text Books:

- 1. Mastering Cloud Computing Buyya R, Vecchiola C, Selvi S T, McGraw Hill Education (India), 2013
- 2. Cloud Computing Principles and Paradigms Buyya R, Broberg J, Goscinski A, Wiley, 2011
- 3. Cloud Computing Concepts, Technology & Architecture Thomas Erl, Zaigham Mahmood, and Ricardo Puttini
- 4. A to z on Docker: A complete Hands-On Guide to Docker Container Swapnil Jain
- 5. Docker Cookbook Sébastien Goasguen, O'reilly Nov. 2015 First Edition

- 1. Cloud Computing Bible Barrie Sosinsky ,Wiley Publishing Inc. 2011
- 2. Cloud Native DevOps with Kubernetes John Arundel and Justin Domingus

Course Code:	L	T	P	Credit		
Course Name:	Web Technology-II		2		2	3

Basic Programming Knowledge, Basic knowledge of HTML, CSS, and JavaScript, Introduction to Java, Basic knowledge of relational databases

Course Description:

This course provides comprehensive training in building full-stack web applications using React for the frontend and Spring Boot for the backend. Students will learn to design responsive user interfaces, develop RESTful APIs, and integrate both ends to create modern web applications. Emphasis is placed on component-based development, routing, state management, secure API development, and deployment.

Course Outcomes: After the completion of the course the student will be able to -							
CO1	Design and implement dynamic user interfaces using React and its component-based architecture.						
CO2	Develop secure and scalable backend services using Spring Boot and RESTful APIs.						
CO3	Integrate frontend and backend technologies to build full-stack web applications.						
CO4	Deploy and test full-stack applications with effective state management and secure API communication.						

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1										1			
CO2	1	2			2					1	2		1	
CO3	1	1	2	1	3			2				2	2	2
CO4	1	2		1	1							1	2	

SN	Assessment	Weightage	Remark				
1	In Semester Evaluation	50%	Assignment, Test, Quiz, Seminar, Presentation, etc.				
2	РОЕ	50%	100% course contents				

Course	Contents:		
Unit 1	Introduction	to React	3 Hours
JSX and	ction to SPA and Virtual DOM nal Componen		
State an	d Lifecycle M	ethods	
	g Events in Re		
	Advanced Re		5 Hours
Forms a Lifting S React H	onal Rendering and Input Hand State Up Tooks: useState API and Custo	lling e, useEffect	
Unit 3	React Routin	g and State Management	6 Hours
Global S Introduc API Cal Error Ha	State Managen ction to Redux lls using Axios andling and Lo	/ Fetch	5 Hours
Spring I	Boot Architectu	ramework and Spring Boot ure and Dependencies (Maven/Gradle) with Spring Boot	
Unit 5	Data Persiste	ence and Security	5 Hours
CRUD (Connect Spring I	ting to MySQL	ng Repositories _/PostgreSQL Basics (JWT/OAuth2 overview)	
Unit 6	Full Stack In	tegration and Deployment	4 Hours
Handlin Environ Deployr	g CORS and A ment Configur ment of applica	ntend with Spring Boot Backend API Authentication ration and .env files ation UD application with secure login	
Text Bo	ooks:		
2. Learn	ning Spring Bo	ment with Spring Boot 3 and React byJuha Hinkula Packt Publishing; 4th e ot 3.0: Simplify the development of production-grade applications using Java are Syer Mark Heckler Josh Long	

Reference Books:

Experiment List

1Setup React Development Environment (Node.js, npm, VS Code) and create a basic React app

2Create React components using JSX, Props, and State

3Build forms in React and handle form events and validations

4Implement routing in React using React Router

5Use React Hooks (useState, useEffect) for state and side effects

6Setup Spring Boot project using Spring Initializr and build a basic REST API

7Develop CRUD operations using Spring Boot and MySQL/PostgreSQL

8Implement exception handling and validation in Spring Boot APIs

9Connect React frontend with Spring Boot backend using Axios

10Implement user login and role-based authentication (Spring Security + JWT)

11Manage environment variables and integrate .env in frontend/backend

12Final mini-project: Develop and deploy a full-stack web app (e.g., Task Manager, E-Commerce Admin, Event Manager)

Course Code:	23CSEU6E06	L	Т	P	Credit
Course Name:	Programming Paradigms	3			3

Basic knowledge of data structures, object-oriented programming, and discrete mathematics is required.

Course Description:

This is one of the core course of Computer Science & Engineering Programme. In this course you will become familiar with the core concepts of OS - how OS work, how a processes & threads are created, inter-process communication & synchronisation, the various scheduling algorithms, memory management & memory allocation strategies, etc.

Course	Outcomes:	After the completion of the course the student will be able to -								
CO1	Explain the pr	rinciples, strengths, and limitations of various programming paradigms.								
CO2	Apply imperative, object-oriented, functional, and logic programming techniques to solve computational problems.									
CO3	Analyze and consideration	compare programming paradigms based on problem requirements and performance s.								
CO4	Design and in models.	nplement multi-paradigm software solutions integrating concepts from different programming								

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2									1	2	1	
CO2	2	2			2					1	2			
CO3	1	1	2	1	3							1		2
CO4	2	2		1	1								1	2

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 Introduction 6 Hours

Definition and classification of programming paradigms, Historical evolution of programming languages Comparison of paradigms: strengths and limitations, Problem-solving approaches across paradigms, Language design principles and trade-offs

Unit 2 | Imperative Programming

8 Hours

Imperative programming model and state changes, Variables, assignment, and sequence control Structured programming principles, Procedures, functions, and parameter passing mechanisms, Memory management and pointer arithmetic, Control structures and iteration patterns

Data Representation: The role of types, Basic types, Arrays, Records, Unions & Variant Records, Sets, Pointers.

Unit 3 Object-Oriented Programming

6 Hours

Advanced OOP concepts: polymorphism, inheritance hierarchies, Abstract classes and interfaces

Design patterns: Singleton, Factory, Observer, Strategy

SOLID principles in software design

Exception handling and resource management

Generic programming and templates

Unit 4 | Functional Programming

7 Hours

Functional programming philosophy and pure functions, Higher-order functions and function composition, Recursion patterns and tail recursion optimization, Immutability and persistent data structures, Lambda expressions and closures, Currying, partial application, and function combinators, Monads and functional error handling, Lazy evaluation and infinite data structures

Unit 5 | Logic Programming

6 Hours

Logic programming paradigm and declarative thinking, Predicate logic and Horn clauses, Unification and backtracking mechanisms, Cut operator and control in Prolog, List processing and recursive data structures, Constraint logic programming basics

Unit 6 | Concurrent and Parallel Programming

8 Hours

Concurrency vs parallelism concepts, Thread creation and synchronization primitives, Race conditions, deadlocks, and their prevention, Message passing and actor model, Parallel algorithms and data parallelism, Asynchronous programming patterns

Text Books:

- 1."Programming Language Pragmatics" by Michael L. Scott
- 2. "Concepts of Programming Languages" by Robert W. Sebesta

Reference Books:

1. "Modern Programming Languages: A Practical Introduction" by Adam Brooks Webber

Course Code:	23CSEU6E07	L	T	P	Credit
Course Name:	Ethical Hacking	3	0	0	3

Set Theory, Operating System, Data Structures, Basic Software Engineering Concept (SDLC)

Course Description:

Ethical hacking course is designed to help learners to develop a deeper understanding of threats to information system. We hope learners will develop a lifelong passion and appreciation for ethical hacking, which we are certain will help in future endeavours. Students will benefit from this learning experience. Almost all aspects of security are covered in this course.

Course	Outcomes:	After the completion of the course the student will be able to -									
CO1	Define the ba	asic concepts of components of Information and systems security.									
CO2	1 *	Explain Footprinting, Reconnaissance, Network Scanning, Vulnerability Assessment, System Hacking, Malware Threats									
CO3	Describe Sni	ffing and Social Engineering tools and techniques									
CO4	Explain Sesion with SQL inj	on Hijacking, Firewall and IDS, Honeypot, Web Server and web applications security issues ection									

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												2	1
CO2	2				2			1					1	3
CO3	2				2			1					3	3
CO4	2				2			1					2	3

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 Introduction to Ethical Hacking

5 Hours

Essential Terminology, Elements of Information Security, The Security, Functionality, and Usability Triangle, Top Information Security Attack Vectors, Information Security Threat Categories, Types of Attacks on a System, Information Warfare, Hacking Concept and Scope, Vulnerability Assessment, Penetration Testing

Unit 2 | Footprinting and Reconnaissance

6 Hours

FootprintingConcept,Footprinting Methodology, Overview of Network Scanning, Scanning Methodology, Vulnerability Assessment Concept, System Hacking, Mulware Threats

Unit 3 | Sniffing and Social Engineering

8 Hours

Sniffing Concepts, MAC attacks, DHCP attacks, ARP Poisoning, Spoofing Attack, DNS Poisoning, Sniffing Tools, Social Engineering Concepts and Techniques, Impersonation on Social Networking Site, Identity Theft

Unit 4 | Session Hijacking and Firewall and Web Server

7 Hours

IDS and Firewall Concepts and System, Evading IDS, Firewall, Web Server Concepts and attacks, Attack Methodology, Countermeasures, Patch Management

Unit 5 | Web Application Hacking and SQL Injection

7 Hours

Web App concepts and attack methodology, Countermeasures ,SQL Injection methodology, SQL Injection Techniques

Unit 6 | Hacking Wireless Network and Mobile Platform

7 Hours

Wireless Concept, Wireless Encryption, Wireless Threats, Hacking Methodology, Bluetooth Hacking, Wireless Security Tool, Mobile Platform Attack Vector, Hacking Android, iOS, Blackberry, Understanding IoT Attack

Text Books:

1. CEH V10: EC-Council Certified Ethical Hacker Complete Training Guide by IPSpecialist

Reference Books:

1.CEH v10 Certified Ethical Hacker Study Guide, Ric Messier, CEH, GCIH, GSEC, CISSP, SYBEX Publication

Course Code:	23CSEU6E08	L	T	P	Credit
Course Name:	Image Processing	3	0	0	3

Basic knowledge of signals and systems, linear algebra, probability, and programming in Python

Course Description:

This course introduces the principles and techniques of digital image processing, covering image acquisition, enhancement, restoration, segmentation, compression, and color processing, with practical applications using tools like Python

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	Understand th	ne basics of digital images and image acquisition.						
CO2	Apply spatial and frequency domain techniques for image enhancement.							
CO3	Perform imag	Perform image restoration and color image transformations.						
CO4	Implement in	nage segmentation, morphological operations, and compression methods.						

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2				1	2	1	1	3	3
CO2	3	3	2	3	2				1	2	2	1	3	3
CO3	3	2	2	2	2				1	2	1	1	3	3
CO4	3	2	2	2	2				1	2	2	1	3	3

SN	Assessment	Weightage	Remark
1	In Semester Evaluation1 [10 Marks]	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination [30 Mar	30%	50% Course Contents
3	3 In Semester Evaluation2 [10 Marks]		Assignment, Test, Quiz, Seminar, Presentation, etc.
4	nd Semester Examination [50 Marks	50%	100% Course Contents

Unit 1 Introduction to Digital Image Processing

5 Hours

Fundamentals of image processing and computer vision, image sensing, acquisition and representation, sampling and quantization, basic relationships between pixels, imaging modalities: grayscale, color, binary

Unit 2 Image Enhancement in Spatial Domain

7 Hours

Intensity transformations: contrast stretching, thresholding, histogram processing: equalization, matching, smoothing and sharpening filters (linear and non-linear), Laplacian and gradient-based enhancement

Unit 3 Image Enhancement in Frequency Domain

6 Hours

Fourier Transform and DFT for images, frequency domain filtering: low pass, high pass, band pass, homomorphic filtering, Fast Fourier Transform (FFT)

Unit 4 Image Restoration and Color Processing

7 Hours

Degradation model, noise models, restoration filters: inverse, Wiener, median, color image processing: RGB, HSV, HSI models, pseudocolor and full-color processing

Unit 5 Image Segmentation and Morphological Processing

8 Hours

Edge detection: Sobel, Prewitt, Canny, thresholding, region growing, watershed segmentation, morphological operations: erosion, dilation, opening, closing, boundary detection and object representation

Unit 6 Image Compression and Applications

7 Hours

Fundamentals of image compression, lossless vs lossy compression, Huffman coding, Run-Length encoding, JPEG compression, applications: medical imaging, satellite image processing, OCR

Text Books:

- 1. Rafael C. Gonzalez & Richard E. Woods, Digital Image Processing, Pearson Education, 4th Edition
- 2. S. Jayaraman, S. Esakkirajan, T. Veerakumar, Digital Image Processing, McGraw Hill Education

Reference Books:

- 1. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall
- 2. William K. Pratt, Digital Image Processing, Wiley
- 3. Bhabatosh Chanda & Dwijesh Dutta Majumder, Digital Image Processing and Analysis, PHI Kenneth R. Castleman, Digital Image Processing, Pearson

4.

Course Code:	23CSEU6E09	L	Т	P	Credit
Course Name:	Programming Paradigms Lab			2	1

Fundamentals of Programming, Data Structures and Algorithms, Object-Oriented Programming, Operating Systems

Course Description:

This lab course focuses on hands-on implementation of various programming paradigms, including imperative, object-oriented, functional, and declarative. Students will design concurrent and distributed systems, apply design patterns, and integrate paradigms to build robust software solutions.

Course Outcomes:		After the completion of the course the student will be able to -				
\sim \sim 1	Apply different programming paradigms (imperative, object-oriented, functional, declarative) to solve problems.					
(///	CO2 Implement and analyze concurrent, parallel, and distributed programming using threads, actors, and synchronization.					
CO3	Design and develop integrated software solutions combining multiple paradigms and design patterns.					

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2		3								1	
CO2	3	3	2	2	3								2	
CO3	3	2	3		3			2					2	

SN	Assessment	Weightage	Remark					
1	In Semester Evaluation(Internal)	100%	Assignment, Test, Quiz, Seminar, Presentation, etc.					

Experiment List

- 1. Implement a scientific calculator that supports basic arithmetic, trigonometric functions, and memory operation
- 2 Implement a dynamic data structure library in C containing:

Dynamic array with automatic resizing

Linked list with insertion, deletion, and search operations

Hash table with collision handling

Binary search tree with balancing

- Apply SOLID principles and implement design patterns in a real-world scenario.
- 4 Master functional programming concepts through practical implementation.
- 5 Build a file processing pipeline.
- 6 Develop proficiency in declarative logic programming
- 7 Implement thread-safe data structures and understand synchronization mechanisms.
- 8 Implement distributed systems using the actor model paradigm.
- 9 Design and implement parallel algorithms for computational problems.
- 10 Integrate multiple programming paradigms in a comprehensive software system.

Text Books:

- 1."Programming Language Pragmatics" by Michael L. Scott
- 2. "Concepts of Programming Languages" by Robert W. Sebesta

Reference Books:

1. "Modern Programming Languages: A Practical Introduction" by Adam Brooks Webber

Course Code:	23CSEU6E11	L	T	P	Credit
Course Name:	Image Processing Laboratory			2	1

Basic knowledge of signals and systems, linear algebra, and programming in Python.

Course Description:

This laboratory course provides hands-on experience with fundamental and advanced image processing techniques. Students will implement methods for image acquisition, enhancement in spatial and frequency domains, restoration, segmentation, morphological processing, and compression. The course emphasizes practical applications such as medical imaging, satellite image analysis, and optical character recognition (OCR).

Course	Outcomes:	After the completion of the course the student will be able to -		
CO1 Apply fundamental image processing techniques including acquisition, enhancement, and transformation.				
CO2 Implement spatial and frequency domain methods for image enhancement and restoration.				
CO3 Perform image segmentation, morphological processing, and basic compression techniques practical applications.				

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	2	2			1	1	3	1	3	3
CO2	3	3	2	3	3	2			1	1	3	1	3	3
CO3	2	2	2	3	3	3			1	1	3	1	3	3

SN	Assessment	Weightage	Remark
1	In Semester Evaluation [25 Marks]	100%	Experiment, Practical Performance and Oral Exam etc.

List of H	Experiments:					
1	Perform basic image operations like grayscale conversion, resizing, and rotation.					
2	Demonstrate image sampling and quantization with different resolutions					
3	Apply histogram equalization to enhance image contrast.					
4	Use mean and median filters for image smoothing.					
5	Apply Laplacian and gradient filters for image sharpening.					
6	Perform Fourier Transform and apply low-pass filtering in frequency domain.					
7	Restore a noisy image using Wiener and inverse filtering.					

Text Books:

1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Pearson Education.

8 Convert an image from RGB to HSV and apply pseudocolor mapping.

10 Compress an image using Run-Length Encoding and Huffman Coding.

2. Anil K. Jain, Fundamentals of Digital Image Processing, PHI Learning.

9 Detect edges using Sobel, Prewitt, and Canny operators.

3. S. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Processing, McGraw Hill Education.

Reference Books:

- 1. William K. Pratt, Digital Image Processing, Wiley
- 2. B. Chanda and D. Dutta Majumder, Digital Image Processing and Analysis, PHI
- 3. Milan Sonka, Vaclav Hlavac, and Roger Boyle, Image Processing, Analysis, and Machine Vision, Cengage
- 4. Kenneth R. Castleman, Digital Image Processing, Pearson

Course Code:	23CSEU6E12	 L	T	P	Credit
Course Name:	FOSS Tools	3	0	0	3

Basic Programming Knowledge and Software Engineering Fundamentals

Course Description:

This course introduces students to Free and Open Source Software (FOSS) concepts and essential tools used in software development. Students will learn FOSS philosophy, version control, document preparation, web development stack, containerization, and study real-world FOSS projects.

Course	rse Outcomes: After the completion of the course the student will be able to -				
CO1	Understand FOSS philosophy and different software licensing models.				
CO2	Use various FOOS tools like Git, docker, LaTeX.				
CO ₃	Illustrate use of LAMP stack for web applications.				
CO4	Summarize s	Summarize successful FOSS projects and their development models.			

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1	1	2	3		2					3	
CO2	1	1	2	1	3				2	2	1	3	3	2
CO3	1	1	2	1	3							3	3	2
CO4	1	3	3	3	3						·			

Assessi	ment Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISI	E1) 10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 | FOSS Philosophy and Licensing

6 Hours

Introduction to Free Software and Open Source Software. History of FOSS: GNU Project, Linux, Open Source Initiative. FOSS Philosophy: Four Freedoms, Benefits of Open Source. Software Licenses: Copyright basics, GPL, MIT, BSD, Apache License. License selection and compatibility. Legal aspects of FOSS.

Unit 2 | Version Control with Git

8 Hours

Introduction to Version Control Systems. Git basics: Repository, Working Directory, Staging Area. Basic Git commands: init, add, commit, status, log. Branching and Merging: Creating branches, switching branches, merging. Remote repositories: GitHub, clone, push, pull. Collaborative development: Pull requests, code reviews.

Unit 3 | LaTeX Document Preparation

8 Hours

Introduction to LaTeX: Advantages over word processors. Document structure: Document classes, packages, basic formatting. Text formatting: Sections, lists, emphasis. Mathematical equations and symbols. Including figures and tables. Bibliography and citations. Creating presentations with Beamer.

Unit 4 LAMP Stack

8 Hours

Introduction to LAMP: Linux, Apache, MySQL, PHP. Apache Web Server: Installation, configuration, virtual hosts. MySQL Database: Basic SQL commands, database creation, user management. PHP Programming: Syntax, variables, functions, connecting to MySQL. Building a simple web application using LAMP.

Unit 5 | Docker Containerization

8 Hours

Introduction to Containers: Containers vs Virtual Machines. Docker basics: Images, containers, Docker Hub. Docker commands: run, build, pull, push. Creating Dockerfiles: Instructions and best practices. Docker Compose: Managing multi-container applications. Container deployment and management.

Unit 6 | Case Studies and FOSS Projects

4 Hours

Success stories: Linux, Apache, MySQL, Firefox. FOSS development models: Community vs corporate projects. Business models: Red Hat, Ubuntu, MongoDB. Community aspects: Governance, contributions, documentation. Current trends in FOSS. Getting involved in FOSS projects.

Text Books:

- Unit 1: "Understanding Open Source and Free Software Licensing" Andrew M. St. Laurent (O'Reilly Media)
- Unit 2: "Pro Git" Scott Chacon and Ben Straub (Apress) Available online at git-scm.com
- Unit 3: "LaTeX: A Document Preparation System" Leslie Lamport (Addison-Wesley)
- Unit 4: "Learning PHP, MySQL & JavaScript" Robin Nixon (O'Reilly Media)
- Unit 5: "Docker: Up & Running" Karl Matthias and Sean P. Kane (O'Reilly Media)
- Unit 6: "The Cathedral and the Bazaar" Eric S. Raymond (O'Reilly Media)

Reference Books:

"Free Software, Free Society" - Richard M. Stallman (GNU Press)

- "Version Control with Git" Jon Loeliger and Matthew McCullough (O'Reilly Media)
- "The LaTeX Companion" Frank Mittelbach, Michel Goossens (Addison-Wesley)
- "Web Development with Apache and PHP" James Lee and Brent Ware (Manning Publications)
- "Docker Deep Dive" Nigel Poulton (Independent Publishing)

Course Code:	23CSEU6E13		L	T	P	Credit
Course Name:	Course Name: Blockchain Technology		3			3

Basics of Programming, networks, and cryptography

Course Description:

This course introduces the fundamentals of blockchain technology and smart contracts. It covers the architecture, cryptographic principles, consensus mechanisms, and key platforms such as Bitcoin and Ethereum. Students will gain hands-on experience in writing and deploying smart contracts using Solidity. The course also explores real-world applications of blockchain across industries like finance, supply chain, and healthcare.

Course	Outcomes:	After the completion of the course the student will be able to -				
CO1	Write, deploy, and test smart contracts using Solidity on Ethereum					
CO2	Set up and configure blockchain development environments and tools.					
CO3	Develop mini DApps integrating smart contracts for real-world use cases.					
CO4	Simulate blockchain transactions and interactions using decentralized tools.					

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1										1			
CO2	1	2			2					1	2		1	
CO3	1	1	2	1	3			2				2	2	2
CO4	1	2		1	1							1	2	

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 INTRODUCTION TO BLOCKCHAIN

6 Hours

Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain -History, Evolution of Blockchain, Definition, Need of Blockchain, Distributed Vs Centralized Vs Decentralized, Public Ledgers: Blockchain as Public Ledgers, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain, Benefits and Challenges of Blockchain Usages

Unit 2 BLOCKCHAIN ARCHITECTURE

7 Hours

Operation of Bitcoin Blockchain, Blockchain Design Principles, Components of blockchain, Layered Architecture of Blockchain Ecosystem, Blockchain Architecture – Block, Hash, Distributed P2P, Merkle Tree, Structure of Blockchain- Types of Networks: Distributed Network, P2P Network, Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET)etc.

How Blockchain Works? Blockchain Demo - How Mining Works? (The NONCE and Cryptographic Puzzle) Immutable Ledger, Hard and Soft Forks, double spending

Unit 3 | CRYPTO CURRENCY

6 Hours

Bitcoin: Bitcoin and its History, Why use bitcoins? Where and how to buy bitcoins, Bitcoin transactions, How bitcoin transactions work, Bitcoin scripts and wallets.

Ethereum: Ethereum Virtual Machine (EVM) – Wallets for Ethereum, Ethereum and Smart Contract, Solidity - Smart Contracts, Ether, Gas DApps, Decentralized Autonomous Organizations (DAO) Compare Bitcoin and Ether

Unit 4 SMART CONTRACT AND SOLIDITY FUNDAMENTALS

7 Hours

Smart contracts, features of smart contract, types of Smart contract, advantages and challenges of smartcontract, Solidity: Introduction to solidity, Basic syntax, Data types, Operators, control flow, functions A programming structure in solidity

Unit 5 | Solidity Advanced

7 Hours

Constructors, inheritance, abstract contracts, interfaces, events, mapping, error handling, libraries

Unit 6 DIFFERENT BLOCKCHAIN FRAMEWORKS AND USE CASES

6 Hours

Study of Blockchain Frameworks: Hyperledger, IOTA, Corda, Multichain, Quorum etc. Different use cases of blockchain other than cryptocurrencies

Text Books:

- 1. Beginning Blockchain : A Beginner's Guide to Building Blockchain Solutions By Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda, Apress Media.
- 2. Imran Bashir, "Mastering BlockChain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Packt Publishing, first edition 2012
- 3. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 4. Mastering Ethereum: Building Smart Contracts and DAPPS, by Andreas Antonopoulos, Dr. Gavid Wood, Oreilly Publication
- 5. Anshul Kaushik, "BlockChain and Crypto Currencies", Khanna Publishing House, Delhi

Reference Books:

1. Learn Ethereum: Build your own decentralized applications with Ethereum and smart contracts by by Xun (Brian) Wu , Zhihong Zou , Dongying Song

Course Code:	23CSEU6E14	L	T	P	Credit
Course Name:	Course Name: Augmented Reality/Virtual Reality				3

Computer Graphics and Mathematics

Course Description:

This course provides comprehensive coverage of Augmented Reality (AR) and Virtual Reality (VR) technologies. Students will learn to develop AR/VR applications using industry-standard tools. The course imparts theoretical knowledge, preparing students for careers in the rapidly growing AR/VR industry across gaming, healthcare, education, and enterprise applications.

Course	Outcomes:	After the completion of the course the student will be able to -					
CO1	Demonstrate	Demonstrate comprehensive understanding of AR/VR technologies and their applications					
CO2	Apply comp	Apply computer vision techniques for tracking and recognition in AR systems					
CO3	Create intuiti	Create intuitive user interfaces for immersive 3D environments					
CO4	Analyze current trends and future directions in AR/VR technology						

CO-PO Mapping:

П		DO1	DOA	DO	DO 4	DO 5	DO.	DO7	DOO	DOO	DO 10	DO 1.1	DO 10	DCO1	DCCA
		POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POIU	POH	PO12	PSOI	PSO2
	CO1	2	1	2	1	3	2	1					1	3	2
	CO2	2	1	1	1	3	1						1	3	3
	CO3	1	1	2	1	2	2						1	3	3
	CO4	1	2		2	3	3	2					1	2	3

Assess	ment Scheme:		
SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
2	Mid Semester Examination (MSE)	30%	50% of course contents
3	In Semester Evaluation 2 (ISE2)	10%	Assignment, Test, Quiz, Seminar, Presentation, etc.
4	End Semester Examination (ESE)	50%	100% course contents

Unit 1 | Introduction to AR/VR

6 Hours

Definitions and Terminology: Virtual Reality (VR) fundamentals, Augmented Reality (AR) fundamentals, Mixed Reality (MR) and Extended Reality (XR), Difference between AR, VR, and MR

Historical Development: Evolution of AR/VR technologies, Key milestones and breakthrough moments Types of Reality Systems: Immersive VR systems, Non-immersive VR systems, Marker-based and markerless AR, Location-based AR

Unit 2 | Hardware and Software Architecture

8 Hours

VR Hardware Components: Head-mounted displays (HMDs), Motion tracking systems, Input devices and controllers, Audio systems and haptic feedback, Graphics processing requirements

AR Hardware Components: Cameras and sensors, Display technologies (optical see-through vs video see-through), Mobile AR platforms, Smart glasses and wearable devices

Software Architecture: VR/AR development platforms and engines, Unity 3D for AR/VR development, Unreal Engine fundamentals, WebXR and browser-based solutions, Mobile AR frameworks (ARCore, ARKit) Performance Considerations: Frame rate and latency requirements, Optimization techniques, Memory management, Battery life considerations for mobile AR

Unit 3 | 3D Graphics and Rendering for AR/VR

8 Hours

3D Graphics Fundamentals: 3D coordinate systems and transformations, Perspective and orthographic projections, Viewing transformations for VR, Stereoscopic rendering

Lighting and Shading: Real-time lighting models, Shadow mapping techniques, Physically-based rendering (PBR), Environmental lighting for AR

Texture Mapping and Materials: UV mapping and texture coordinates, Normal mapping and bump mapping, Material properties for realistic rendering, Procedural textures

Optimization Techniques: Level of detail (LOD) systems, Occlusion culling, Frustum culling, Batching and instancing

Unit 4 | Computer Vision for AR Applications

8 Hours

Image Processing Fundamentals: Digital image representation, Image filtering and enhancement, Edge detection algorithms, Feature extraction techniques

Marker-Based Tracking: Fiducial markers and QR codes, Marker detection algorithms, Pose estimation from markers, Marker design principles

Markerless Tracking: Natural feature tracking, SLAM (Simultaneous Localization and Mapping), Plane detection and estimation, Object recognition and tracking

Camera Calibration: Intrinsic and extrinsic parameters, Calibration procedures, Distortion correction, Multiple camera systems

Unit 5 | User Interface and Interaction Design

8 Hours

VR Interaction Paradigms: 3D user interface design principles, Gaze-based interaction, Hand tracking and gesture recognition, Voice commands and spatial audio, AR Interface Design, Spatial UI design principles, Occlusion and depth perception, Touch and gesture interfaces, Context-aware interfaces

Human Factors and Ergonomics: Motion sickness and cybersickness, Visual comfort and eye strain, Accessibility considerations, User experience evaluation methods,

Interaction Techniques: Selection and manipulation in 3D space, Navigation and locomotion in VR, Menu systems and information display, Collaborative and multi-user interfaces

Unit 6 | Applications and Emerging Trends

4 Hours

Industry Applications: Medical visualization and surgical training, Architectural visualization and design, Industrial training and maintenance, ducational simulations and learning environments Emerging Trends: Social VR and metaverse concepts, AI integration in AR/VR, Cloud-based AR/VR solutions, Haptic feedback and sensory integration

Text Books:

- 1. "Virtual Reality Technology" by Grigore C. Burdea and Philippe Coiffet
- 2. "Augmented Reality: Principles and Practice" by Dieter Schmalstieg and Tobias Hollerer

Reference Books:

- 1. "Learning Virtual Reality" by Tony Parisi
- 2. "Augmented Reality for Developers" by Jonathan Linowes and Krystian Babilinski
- 3. "Unity in Action" by Joe Hocking
- 4. "Real-Time Rendering" by Tomas Akenine-Möller, Eric Haines, and Naty Hoffman

Course Code:	23CSEU6E16		L	T	P	Credit
Course Name:	Blockchain Technolo	gy Lab			2	1

Basics of Programming, networks, and cryptography

Course Description:

This course introduces the fundamentals of blockchain technology and smart contracts. It covers the architecture, cryptographic principles, consensus mechanisms, and key platforms such as Bitcoin and Ethereum. Students will gain hands-on experience in writing and deploying smart contracts using Solidity. The course also explores real-world applications of blockchain across industries like finance, supply chain, and healthcare.

Course Outcomes:		After the completion of the course the student will be able to -					
CO1	Describe the fundamentals, architecture, and types of blockchain systems.						
CO2	Analyze cryptographic techniques and consensus mechanisms used in blockchain.						
CO3	Develop smart contracts using Solidity and deploy them on Ethereum-like platforms.						
CO4	Evaluate bloc	kchain platforms and applications for real-world problem-solving in various domains.					

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1										1			
CO2	1	2			2					1	2		1	
CO3	1	1	2	1	3			2				2	2	2
CO4	1	2		1	1							1	2	

SN	Assessment	Weightage	Remark
1	In Semester Evaluation 1 (ISE1)	100%	Assignment, Test, Quiz, Seminar, Presentation, etc.

Experiment List

- 1 Introduction to Blockchain simulators and tools (Ganache, MetaMask, Remix IDE)
- 2 Setting up Ethereum blockchain environment using Ganache and connecting with MetaMask
- 3 Creating and deploying a basic smart contract using Solidity in Remix
- 4 Writing a smart contract for a voting system
- 5 Implementing a smart contract for a crowdfunding platform
- 6 Demonstrating a cryptocurrency transfer between accounts using smart contract
- 7 Managing ownership and access control in smart contracts
- 8 Testing smart contracts with Truffle framework (optional advanced)
- 9 Mini project: Develop a DApp with front-end integration

Text Books:

- 1. Beginning Blockchain : A Beginner's Guide to Building Blockchain Solutions By Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda, Apress Media.
- 2. Imran Bashir, "Mastering BlockChain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Packt Publishing, first edition 2012
- 3. Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System
- 4. Mastering Ethereum: Building Smart Contracts and DAPPS, by Andreas Antonopoulos, Dr. Gavid Wood, Oreilly Publication
- 5. Anshul Kaushik, "BlockChain and Crypto Currencies", Khanna Publishing House, Delhi

Reference Books:

1. Learn Ethereum: Build your own decentralized applications with Ethereum and smart contracts by by Xun (Brian) Wu , Zhihong Zou , Dongying Song

Course Code:	23CSEU6E14	L	T	P	Credit
Course Name:	Augmented Reality/Virtual Reality Laboratory	0	0	2	1

Computer Graphics and Mathematics

Course Description:

This laboratory course provides hands-on experience with Augmented Reality (AR) and Virtual Reality (VR) technologies. Students will develop practical skills in creating AR/VR applications using industry-standard tools and frameworks.

Course Outcor	nes:	After the completion of the course the student will be able to -							
CO1	Implement a	nd demonstrate AR/VR applications using various development platforms							
CO2	Develop con	Develop computer vision-based tracking systems for marker-based and markerless AR applications							
CO3	Design and implement intuitive 3D user interfaces with interaction techniques for immersive environments								
CO4	CO4 Create and evaluate AR/VR applications for real-world scenarios								

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		3	2							3	3
CO2	3			1	3								3	3
CO3	1		3		3	2							3	3
CO4	1	3		3	3	3							3	3

Assessment Scl	neme:			
SN	Assessment	Weight		Remark
1	Internal		100%	Practical performance, Internal POE

	~ , ,
('Allrea	Contents:
COULSE	COHECHES.

Experiment 1: Introduction to Unity 3D for AR/VR Development	2 Hours
Experiment 2: Marker-Based AR Application Development	2 Hours
Experiment 3: Markerless AR with Plane Detection	2 Hours
Experiment 4: 3D Graphics Rendering and Optimization	2 Hours
Experiment 5: VR Interaction Systems	2 Hours
Experiment 6: Computer Vision for AR Tracking	2 Hours
Experiment 7: AR/VR User Interface Design	2 Hours
Experiment 8: Medical AR Visualization	4 Hours
Experiment 9: Educational VR Application	4 Hours

Text Books:

- "Virtual Reality Technology" by Grigore C. Burdea and Philippe Coiffet
 "Augmented Reality: Principles and Practice" by Dieter Schmalstieg and Tobias Hollerer

Reference Books:

- "Learning Virtual Reality" by Tony Parisi
 "Augmented Reality for Developers" by Jonathan Linowes and Krystian Babilinski
 "Unity in Action" by Joe Hocking
 "Real-Time Rendering" by Tomas Akenine-Möller, Eric Haines, and Naty Hoffman

Course Code:	23CSEU6N18	L	T	P	Credit
Course Name:	Project Management Tools	1		2	2

1. Software Engineering

Course Description:

This course aims to provide students with a practical and theoretical foundation in project management principles and the use of modern tools to plan, execute, monitor, and closure of software projects. Emphasis is placed on tools like MS Project, Trello, JIRA, and others for managing real-world project scenarios.

Course	Outcomes:	After the completion of the course the student will be able to -						
CO1	Explain the fundamentals of software project management and project life cycle							
CO2	Apply project planning and scheduling techniques using modern tools							
CO3	Demonstrate tracking, monitoring, and risk management in software projects							
CO4	Collaborate effectively using online tools to manage a mini-project							

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2								1			1
CO2	1	2	2	2	3				3	1		1	1	
CO3	1	1	2	2	3				3	2		1	3	1
CO4	1	1	2	1	3					2		3	3	2

SN	Assessment	Weightage	Remark
1	In Semester Examination (ISE)	50%	100% course contents
2	External Oral Examination (OE/POE)	50%	100% course contents

Unit 1 Introduction to Project Management

3 Hours

Definition, characteristics, and importance of projects, Project Life Cycle & stakeholders, Role and responsibilities of a project manager, Project initiation: Charter, scope, and objectives, Traditional vs. Agile project management methodologies

Unit 2 | Project Planning and Scheduling

4 Hours

Work Breakdown Structure (WBS), Time estimation techniques (PERT/CPM overview), Task dependencies and milestones, Gantt Charts, Critical Path Method (CPM), Hands-on overview of MS Project / OpenProject for schedule generation

Unit 3 | Monitoring, Risk, and Cost Management

4 Hours

Resource allocation and leveling, Cost estimation and budgeting, Project tracking: Earned Value Analysis (EVA), Risk identification and mitigation strategies, Change control and performance metrics

Unit 4 Agile Tools and Project Closure

3 Hours

Agile principles: Scrum, Kanban, sprints, Tools: Trello, JIRA – Backlogs, sprint planning, burndown charts, Project closure: Reports, audits, lessons learned, Final documentation and project handoff.

Text Books:

- 1. "Information Technology Project Management", Kathy Schwalbe, Cengage Learning, 7/e, 2013.
- 2. "Technology Ventures From Idea to Enterprise", Thomas H. Byers, Richard C. Dorf, Andrew J., Nelson

Reference Books:

- 1. "Software Project Management", M. Cottrell and B. Hughes, McGraw-Hill, 5/e, 2009.
- 2. "Project Management Software Tools: A Guide to Choosing the Right Tools" by Michael S. Dobson
- 3. "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses" by Eric